2019年高考数学高频考点揭秘与仿真测试专题44数列数列的通项1(观察法、前n项和求通项)文(含解析).doc
《2019年高考数学高频考点揭秘与仿真测试专题44数列数列的通项1(观察法、前n项和求通项)文(含解析).doc》由会员分享,可在线阅读,更多相关《2019年高考数学高频考点揭秘与仿真测试专题44数列数列的通项1(观察法、前n项和求通项)文(含解析).doc(8页珍藏版)》请在麦多课文档分享上搜索。
1、1专题 44 数列 数列的通项 1(观察法、前 n 项和求通项)【考点讲解】1、具本目标:掌握用不同的数学方法求不同形式数列的通项公式.通过数列通项公式的求解过程,利用数列的变化规律,恰当选择方法,是数列的研究和探索奠定基础.二、知识概述:1.数列的通项公式:(1)如果数列 na的第 项与序号 n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式即 f,不是每一个数列都有通项公式,也不是每一个数列都有一个个通项公式.(2)数列 na的前 项和 nS和通项 na的关系: .2.求数列的通项公式的注意事项:(1)根据数列的前几项求它的一个通项公式,要注意观察每一项的特点,观察出项与
2、 n 之间的关系、规律,可使用添项、通分、分割等办法,转化为一些常见数列的通项公式来求对于正负符号变化,可用n或 1n来调整(2)根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴含着“从特殊到一般”的思想由不完全归纳法得出的结果是不可靠,要注意代值验证.(3)对于数列的通项公式要掌握:已知数列的通项公式,就可以求出数列的各项;根据数列的前几项,写出数列的一个通项公式,这是一个难点,在学习中要注意观察数列中各项与其序号的变化情况,分解所给数列的前几项,看看这几项的分解中哪些部分是变化的,哪些是不变的,再探索各项中变化部分与序号的联系,从而归纳出构成数列的规律,写出通项公式. 3.数列通
3、项一般有三种类型:(1)已知数列是等差或等比数列,求通项,破解方法:公式法或待定系数法;(2)已知 Sn,求通项,破解方法:利用 Sn-Sn-1= an,但要注意分类讨论,本例的求解中检验必不可少,值得重视;(3)已知数列的递推公式, 求通项,破解方法:猜想证明法或构造法。3. 已知数列 na的前 项和 nS,求数列的通项公式,其求解过程分为三步:(1)先利用 1S求出 1;(2)用 替换 n中的 得到一个新的关系,利用 na1nS (2)便可求出当 2n时 na的表达式;2(3)对 1n时的结果进行检验,看是否符合 2n时 na的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应
4、该分 1n与 两段来写【注】该公式主要是用来求数列的通项,求数列通项时,一定要分两步讨论,结果能并则并,不并则分.4. 递推公式推导通项公式方法:(1)累加法: (2)累乘法: 1()naf (3)待定系数法: (其中 ,pq均为常数, )解法:把原递推公式转化为: ,其中 pqt1,再利用换元法转化为等比数列求解.(4)待定系数法: (其中 ,pq均为常数, ). (或,其中 ,pqr均为常数).解法:在原递推公式两边同除以 1n,得: ,令 nqab,得: ,再按第(3)种情况求解.(5)待定系数法: 解法:一般利用待定系数法构造等比数列,即令 ,与已知递推式比较,解出 yx,从而转化为
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 年高 数学 高频 考点 揭秘 仿真 测试 专题 44 数列 观察法 求通项 解析 DOC

链接地址:http://www.mydoc123.com/p-1217472.html