六年级数学下册第5单元《数学广角(鸽巢问题)》鸽巢问题教案1新人教版.doc
《六年级数学下册第5单元《数学广角(鸽巢问题)》鸽巢问题教案1新人教版.doc》由会员分享,可在线阅读,更多相关《六年级数学下册第5单元《数学广角(鸽巢问题)》鸽巢问题教案1新人教版.doc(4页珍藏版)》请在麦多课文档分享上搜索。
1、1鸽巢问题1. 在了解简单的“鸽巢问题”的基础上,使学生会用此原理解决简单的实际问题。2. 提高学生有根据、有条理地进行思考和推理的能力。3. 通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。重点:引导学生把具体问题转化成“鸽巢问题” 。难点:找出“鸽巢问题”解决的窍门进行反复推理。铅笔、笔筒、书等。师:同学们,老师给大家表演一个“魔术” 。一副牌,取出大小王,还剩 52 张牌,请 5 个同学上来,每人随意抽一张,我知道至少有 2 人抽到的是同花色的,相信吗?试一试。师生共同玩几次这个“小魔术”,验证一下。师:想知道这是为什么吗?通过今天的学习,你就能解释这个现
2、象了。下面我们就来研究这类问题,我们先从简单的情况入手研究。【设计意图:紧紧扣住学生的好奇心,从学生喜欢的扑克牌“小魔术”开始,激活认知热情。使学生积极投入到对问题的研究中。同时,渗透研究问题的方法和建模的数学思想】1. 讲授例 1。(1)认识“抽屉原理” 。(课件出示例题)把 4 支铅笔放进 3 个笔筒中,那么总有一个笔筒里至少放进 2 支铅笔。学生读一读上面的例题,想一想并说一说这个例题中说了一件怎样的事。教师指出:上面这个问题,同学们不难想出其中的道理,但要完全清楚地说明白,就需给出证明。(2)学生分小组活动进行证明。活动要求:学生先独立思考。把自己的想法和小组内的同学交流。如果需要动手
3、操作,要分工并全面考虑问题。(谁分铅笔、谁当笔筒即“抽屉” 、谁记录等)在全班交流汇报。(3)汇报。师:哪个小组愿意说说你们是怎样证明的? 列举法证明。学生证明后,教师提问:把 4 支铅笔放进 3 个笔筒里,共有几种不同的放法?(共有 4 种不同的放法。在这里 只考虑存在性问题,即把 4 支铅笔不管放进哪个笔筒,都视为同一种情况)根据以上 4 种不同的放法,你能得出什么结论?(总有一个至少放进 2 支铅笔)数的分解法证明。2可以把 4 分解成三个数,共有四种情况:(4,0,0),(3,1,0),(2,2,0),(2,1,1),每一种结果的三个数中,至少有一个数是不小于 2 的。反证法(或假设法
4、)证明。让学生试着说一说,教 师适时指点:假设先在每个笔筒里放 1 支铅笔。那么,3 个笔筒里就放了 3 支铅笔。还剩下 1 支铅笔,放进任意一个笔筒里,那么这个笔筒里就有 2 支铅笔。(4)揭示规律。请同学 们继续思考:把 5 支铅笔放进 4 个笔筒中,那么总有一个笔筒里至少放进几支铅笔,为什么?如果把 6 支铅笔放进 5 个笔筒中,结果是否一样呢?把 7 支铅笔放进 6 个笔筒中呢?把 10 支铅笔放进 9 个笔筒中呢?把 100 支铅笔放进 99 个笔筒中呢?学生回答的同时教师板书:数量(支) 笔筒数(个) 结果5 总有一个笔筒里提问:观察板书,你有什么发现? 小组讨论,引导学生得出一般
5、性结论。(只要放的铅笔数比笔筒的数量多 1,总有一个笔筒里至少放进 2 支铅笔)追问:如果要放的铅笔数比笔筒的数量多 2,多 3,多 4 呢?学生根据具体情况思考并解决此类问题。教师小结。上面我们所证明的数学原理就是最简单的“抽屉原 理”,可以概括为:把 m 个物体任意放到 m-1 个抽屉里,那么总有一个抽屉中至少放进了 2 个物体。2.教学例 2。师:把 7 本书放进 3 个抽屉,不管怎么放,总有一个抽屉里至少放进 3 本书。为什么?自己想一想,再跟小组的同学交流。学生独立思考后,进行小组交流;教师巡视了解情况 。组织全班交流,学生可能会说:我们可以动手操作,选用列举的方法:第一个抽屉 7
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 六年级 数学 下册 单元 广角 问题 教案 新人 DOC
