三年高考(2016_2018)高考数学试题分项版解析专题27概率与统计理(含解析).doc
《三年高考(2016_2018)高考数学试题分项版解析专题27概率与统计理(含解析).doc》由会员分享,可在线阅读,更多相关《三年高考(2016_2018)高考数学试题分项版解析专题27概率与统计理(含解析).doc(23页珍藏版)》请在麦多课文档分享上搜索。
1、1专题 27 概率与统计 考纲解读明方向考点 内容解读 要求 高考示例 常考题型 预测热度1.古典概型理解古典概型及其概率计算公式;会计算一些随机事件所含的基本事件数及事件发生的概率掌握2017 山东,8;2016 天津,16;2015 广东,4;2014 陕西,6选择题解答题 2.几何概型了解随机数的意义,能运用模拟方法估计概率;了解几何概型的意义了解2017 课标全国,2;2016 课标全国,4;2015 湖北,7选择题 分析解读 1.掌握在古典概型条件下,能应用任何事件的概率公式解决实际问题.2.通过实例,理解几何概型及其概率计算公式,并会运用公式求解一些简单的有关概率的问题.本节在高考
2、中单独命题时,通常以选择题、填空题形式出现,分值约为 5 分,属中低档题.随机事件,古典概型与随机变量的分布列,期望与方差等综合在一起考查时一般以解答题形式出现,分值约为 12 分,属中档题.考点 内容解读 要求 高考示例 常考题型 预测热 度1.随机抽样理解随机抽样的必要性和重要性;会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法理解2017 江苏,3;2015 湖北,2;2014 湖南,2;2013 课标全国,3选择题填空题 2.用样本估计总体了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点;理解样本数据标准差的意义和作用,会
3、计算数据标准差;能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释;会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想;会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题掌握2017 课标全国,3;2016 山东,3;2016 四川,16;2015 广东,17;2015 江苏,2;2014 山东,7选择题填空题解答题分析解读 1.掌握简单随机抽样、系统抽样、分层抽样等常用抽样方法,体会三种抽样方法的区别与联系及具体的操作步骤.2.会用样本的频率分布估计总体的分布,会用样本的数字特征估计总体的数字特征.3.样本
4、数字特征及频率分布直方图为高考热点.有关统计内容及方法主要以选择题、填空题的形式呈现,分值约为 5 分,属容易题;抽样方法和各种统计图表与概率的有关内容相结合也会出现在解答题中,分值约为 12分,属中档题.考点 内容解读 要求 高考示例 常考题型 预测热 度2变量的相关性、统计案例(1)会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系;了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.(2)了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题.独立性检验:了解独立性检验(只要求 22列联表)的基本思想、方法及其简单应用;回归分析:了解回归分析的基
5、本思想、方法及其简单应用了解2017 山东,5;2016 课标全国,18;2015 课标,19;2015 福建,4;2014 课标,19;2014 重庆,3选择题解答题 分析解读 1.理解用回归分析处理变量相关关系的数学方法,理解最小二乘法.2.了解独立性检验的基本思想,认识统计方法在决策中的作用.3.了解回归的基本思想方法及其简单应用.4.回归分析与独立性检验在今后的高考中分值可能会提高.本节在高考中主要以选择题、解答题的形式呈现,分值约为 5 分或 12 分,小题为容易题,解答题属中档题.2018 年高考全景展示1 【2018 年理新课标 I 卷】下图来自古希腊数学家希波克拉底所研究的几何
6、图形此图由三个半圆构成,三个半圆的直径分别为直角三角形 ABC 的斜边 BC,直角边 AB, AC ABC 的三边所围成的区域记为 I,黑色部分记为 II,其余部分记为 III在整个图形中随机取一点,此点取自 I,II,III 的概率分别记为p1, p2, p3,则A. p1=p2 B. p1=p3 C. p2=p3 D. p1=p2+p3【答案】A【解析】分析:首先设出直角三角形三条边的长度,根据其为直角三角形,从而得到三边的关系,之后应用相应的面积公式求得各个区域的面积,根据其数值大小,确定其关系,再利用面积型几何概型的概率公式确定出 p1, p2, p3的关系,从而求得结果.详解:设 ,
7、则有 ,从而可以求得 的面积为 ,黑色部分的面积为 ,其余部分的面积为 ,所以有 ,根据面积型几何概型的概率公式,可以得到 ,故选 A.点睛:该题考查的是面积型几何概型的有关问题,题中需要解决的是概率的大小,根据面积型几何概型的概率公式,将比较概率的大小问题转化为比较区域的面积的大小,利用相关图形的面积公式求得结果.32 【2018 年理新课标 I 卷】某地区经过一年的新农村建设,农村的经济收入增加了一倍实现翻番为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例得到如下饼图:则下面结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收
8、入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】A【解析】分析:首先设出新农村建设前的经济收入为 M,根据题意,得到新农村建设后的经济收入为 2M,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关系,从而得出正确的选项.点睛:该题考查的是有关新农村建设前后的经济收入的构成比例的饼形图,要会从图中读出相应的信息即可得结果.3 【2018 年理数全国卷 II】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果哥德巴赫猜想是“每个大于 2 的偶数可以表示为两个素数的和
9、” ,如 在不超过 30 的素数中,随机选取两个不同的数,其和等于 30 的概率是A. B. C. D. 【答案】C4点睛:古典概型中基本事件数的探求方法: (1)列举法. (2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法. (3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. (4)排列组合法:适用于限制条件较多且元素数目较多的题目.4 【2018 年江苏卷】某兴趣小组有 2 名男生和 3 名女生,现从中任选 2 名学生去参加活动,则恰好选中 2名女生的概率为_ 【答案】【解析】分析:先
10、确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.详解:从 5 名学生中抽取 2 名学生,共有 10 种方法,其中恰好选中 2 名女生的方法有 3 种,因此所求概率为点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.5 【2018 年江苏卷】已知 5 位裁判给某运动员打出的分数的茎叶图如图所示
11、,那么这 5 位裁判打出的分数的平均数为_【答案】905【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数.详解:由茎叶图可知,5 位裁判打出的分数分别为 ,故平均数为.点睛: 的平均数为 .6 【2018 年全国卷理】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式为比较两种生产方式的效率,选取 40 名工人,将他们随机分成两组,每组 20 人,第一组工人用第一种生产方式,第二组工人用第二种生产方式根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求 40 名工人完成生产任务所需
12、时间的中位数 ,并将完成生产任务所需时间超过 和不超过 的工人数填入下面的列联表:超过 不超过第一种生产方式第二种生产方式(3)根据(2)中的列联表,能否有 99%的把握认为两种生产方式的效率有差异?附: , 【答案】 (1)第二种生产方式的效率更高. 理由见解析(2)80(3)能【解析】分析:(1)计算两种生产方式的平均时间即可。 (2)计算出中位 数,再由茎叶图数据完成列联表。(3)由公式计算出 ,再与 6.635 比较可得结果。详解:(1)第二种生产方式的效率更高.理由如下:6(i)由茎叶图可知:用第一种生产方式的工人中,有 75%的工人完成生产任务所需时间至少 80 分钟,用第二种生产
13、方式的工人中,有 75%的工人完成生产任务所需时间至多 79 分钟.因此第二种生产方式的效率更高.(ii)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为 85.5 分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为 73.5 分钟.因此第二种生产方式的效率更高.(iii)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于 80 分钟;用第二种生产方式的工人完成生产任务平均所需时间低于 80 分钟,因此第二种生产方式的效率更高.(iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎 8 上的最多,关于茎 8 大致呈对称分布;用第二种生产
14、方式的工人完成生产任务所需时间分布在茎 7 上的最多,关于茎 7 大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高. 以上给出了 4 种理由,考生答出其中任意一种或其他合理理由均可得分.(2)由茎叶图知 .列联表如下:超过 不超过第一种生产方式 15 5第二种生产方式 5 15(3)由于 ,所以有 99%的把握认为两种生产方式的效率有差异.点睛:本题主要考查了茎叶图和独立性检验,考察学生的计算能力和分析问题的能力,贴近生活。7 【2018 年理数全
15、国卷 II】下图是某地区 2000 年至 2016 年环境基础设施投资额 (单位:亿元)的折线图7为了预测该地区 2018 年的环境基础设施投资额,建立了 与时间变量 的两个线性回归模型根据2000 年至 2016 年的数据(时间变量 的值依次为 )建立模型: ;根据 2010 年至 2016 年的数据(时间变量 的值依次为 )建立模型: (1)分别利用这两个模型,求该地区 2018 年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由【答案】 (1)利用模型预测值为 226.1,利用模型预测值为 256.5, (2)利用模型得到的预测值更可靠【解析】分析:(1
16、)两个回归直线方程中无参数,所以分别求自变量为 2018 时所对应的函数值,就得结果, (2)根据折线图知 2000 到 2009,与 2010 到 2016 是两个有明显区别的直线,且 2010 到 2016 的增幅明显高于 2000 到 2009,也高于模型 1 的增幅,因此所以用模型 2 更能较好得到 2018 的预测.理由如下:(i)从折线图可以看出,2000 年至 2016 年的数据对应的点没有随机散布在直线 y=30.4+13.5t 上下,这说明利用 2000 年至 2016 年的数据建立的线性模型不能很好地描述环境基础设施投资额的变化趋势2010 年相对 2009 年的环境基础设
17、施投资额有明显增加,2010 年至 2016 年的数据对应的点位于一条直线的附近,这说明从 2010 年开始环境基础设施投资额的变化规律呈线性增长趋势,利用 2010 年至 20168年的数据建立的线性模型 =99+17.5t 可以较好地描述 2010 年以后的环境基础设施投资额的变化趋势,因此利用模型得到的预测值更可靠(ii)从计算结果看,相对于 2016 年的环境基础设施投资额 220 亿元,由模型得到的预测值 226.1 亿元的增幅明显偏低,而利用模型得到的预测值的增幅比较合理,说明利用模型得到的预测值更可靠以上给出了 2 种理由,考生答出其中任意一种或其他合理理由均可得分点睛:若已知回
18、归直线方程,则可以直接将数值代入求得特定要求下的预测值;若回归直线方程有待定参数,则根据回归直线方程恒过点 求参数.2017 年高考全景展示1.【2017 课标 1,理】如图,正方形 ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A 14B 8C 2D 4【答案】B秒杀解析:由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率 142p,故选 B.【考点】几何概型【名师点睛】对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积9或时间
19、) ,其次计算基本事件区域的几何度量和事件 A 区域的几何度量,最后计算 ()PA.2.【2017 山东,理 8】从分别标有 1, 2, , 9的 张卡片中不放回地随机抽取 2 次,每次抽取 1张则抽到的 2 张卡片上的数奇偶性不同的概率是(A) 518 (B) 49 (C) 59 (D) 79【答案】C【解析】试题分析:标有 1, 2, , 的 张卡片中,标奇数的有 5张,标偶数的有 4张,所以抽到的 2张卡片上的数奇偶性不同的概率是15498C,选 C.【考点】古典概型【名师点睛】概率问题的考查,侧重于对古典概型和对立事件的概率考查,属于简单题.江苏对古典概型概率考查,注重事件本身的理解,
20、淡化计数方法.因此先明确所求事件本身的含义,然后一般利用枚举法、树形图解决计数问题,而当正面问题比较复杂时,往往采取计数其对立事件.3.【2017 江苏,7】 记函数 2()6fxx的定义域为 D.在区间 4,5上随机取一个数 x,则 D的概率是 .【答案】 59 【解析】由 260x,即 260x,得 23x,根据几何概型的概率计算公式得 x的概率是 3()549.【考点】几何概型概率【名师点睛】(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区
21、域(3)几何概型有两个特点:一是无限性,二是等可能性基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率4.【2017 课标 3,理 3】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了 2014 年 1月至 2016 年 12 月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图10根据该折线图,下列结论错误的是A月接待游客量逐月增加B年接待游客量逐年增加C各年的月接待游客量高峰期大致在 7,8 月D各年 1 月至 6 月的月接待游客量相对 7 月至 12 月,波动性更小,变化比较平稳【答案】 A【考点】 折线图【
22、名师点睛】将频率分布直方图中相邻的矩形的上底边的中点顺次连结起来,就得到一条折线,我们称这条折线为本组数据的频率折线图,频率分布折线图的的首、尾两端取值区间两端点须分别向外延伸半个组距,即折线图是频率分布直方图的近似,他们比频率分布表更直观、形象地反映了样本的分布规律.5.【2017 山东,理 5】为了研究某班学生的脚长 x(单位:厘米)和身高 y(单位:厘米)的关系,从该班随机抽取 10 名学生,根据测量数据的散点图可以看出 y与 x之间有线性相关关系,设其回归直线方程为 ybxa已知1025ix,106iy, 4b该班某学生的脚长为 24,据此估计其身高为(A) 16 (B) 3 (C)
23、16 (D) 170【答案】C【解析】试题分析:由已知 2.5,160,42.570,426xyay ,选 C.11【考点】线性相关与线性回归方程的求法与应用【名师点睛】 (1)判断两个变量是否线性相关及相关程度通常有两种方法:(1)利用散点图直观判断;(2)将相关数据代入相关系数 r公式求出 r,然后根据 r的大小进行判断求线性回归方程时在严格按照公式求解时,一定要注意计算的准确性6.【2017 江苏,3】 某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为 200,400,300,100 件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取 60 件进行检验,则应从丙种型号的
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三年 高考 2016 _2018 数学试题 分项版 解析 专题 27 概率 统计 DOC
