三年高考(2016_2018)高考数学试题分项版解析专题05函数图象与方程文(含解析).doc
《三年高考(2016_2018)高考数学试题分项版解析专题05函数图象与方程文(含解析).doc》由会员分享,可在线阅读,更多相关《三年高考(2016_2018)高考数学试题分项版解析专题05函数图象与方程文(含解析).doc(10页珍藏版)》请在麦多课文档分享上搜索。
1、1专题 05 函数图象与方程 文考纲解读明方向考点 内容解读 要求 常考题型 预测热度1.函数图象的判断在掌握基本初等函数图象的基础上,利用函数变化的快慢、函数的定义域、奇偶性、单调性、函数图象过定点等特点对函数图象作出判断2.函数图象的变换掌握函数图象的平移变换、对称变换、伸缩变换和翻折变换,熟悉各种变换的过程和特点,并由此解决相关问题3.函数图象的应用利用函数图象研究函数的性质,根据性质解决相关问题以及利用函数图象解决最值问题、判断方程解的个数选择题、填空题分析解读1.高考主要考查由函数解析式画出函数的图象,两个函数图象的交点出现的情况.近几年考查了用图象表示函数.2.在数学中,由“形”到
2、“数”比较明显,由“数”到“形”需要意识,而试题中主要是由“数”到“形”.在解答题中,要注意推理论证的严密性,避免出现以图代证的现象,利用图象研究函数的性质,特别是在判断非常规方程根的个数时,此法有时“妙不可言”,这是数形结合思想在“数”中的重要体现.考点 内容解读 要求 常考题型 预测热度2函数零点与方程的根1.结合二次函数的图象,了解函数的零点与方程根的联系2.判断一元二次方程根的存在性与根的个数3.根据具体函数的图象,能够用二分法求相应方程的近似解 选择题 分析解读函数与方程思想是中学数学最重要的思想方法之一,由于函数图象与 x轴的交点的横坐标就是函数的零点,所以可以结合常见的二次函数、
3、对数函数、三角函数等内容进行研究.本节内容在高考中分值为 5分左右,属于难度较大题.在备考时,注意以下几个问题:1.结合函数与方程的关系,求函数的零点;2.结合零点存在性定理或函数的图象,对函数是否存在零点进行判断;3.利用零点(方程实根)的存在性求有关参数的取值或范围是高考中的热点问题.命题探究练扩展32018年高考全景展示1 【2018 年浙江卷】函数 y= sin2x的图象可能是A. B. C. D. 【答案】D【解析】分析:先研究函数的奇偶性,再研究函数在 上的符号,即可判断选择.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域
4、,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复 42 【2018 年全国卷文】函数 的图像大致为A. A B. B C. C D. D【答案】D【解析】分析:由特殊值排除即可详解:当 时, ,排除 A,B. ,当 时, ,排除 C故正确答案选 D.点睛:本题考查函数的图像,考查了特殊值排除法,导数与函数图像的关系,属于中档题。 2017年高考全景展示1【2017 课标 1,文 8】函数sin21coxy的部分图像大致为5A B C D 【答案】 C【解析】【考点】函数图象【名师点睛】函数图像问题
5、首先关注定义域,从图象的对称性,分析函数的奇偶性,根据函数的奇偶性排除部分选择支,从图象的最高点、最低点,分析函数的最值、极值利用特值检验,较难的需要研究单调性、极值等,从图象的走向趋势,分析函数的单调性、周期性等确定图象2.【2017 课标 3,文 7】函数 2sin1xy的部分图像大致为( )A B6DC D【答案】D【考点】函数图像【名师点睛】(1)运用函数性质研究函数图像时,先要正确理解和把握函数相关性质本身的含义及其应用方向.(2)在运用函数性质特别是奇偶性、周期、对称性、单调性、最值、零点时,要注意用好其与条件的相互关系,结合特征进行等价转化研究.如奇偶性可实现自变量正负转化,周期
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三年 高考 2016 _2018 数学试题 分项版 解析 专题 05 函数 图象 方程 DOC
