湖北省十堰市2019届高三数学元月调研考试试题理(含解析).doc
《湖北省十堰市2019届高三数学元月调研考试试题理(含解析).doc》由会员分享,可在线阅读,更多相关《湖北省十堰市2019届高三数学元月调研考试试题理(含解析).doc(20页珍藏版)》请在麦多课文档分享上搜索。
1、- 1 -十堰市 2019 年高三年级元月调研考试理科数学试题第卷一、选择题.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知 , ,则 ( )A. B. C. D. 【答案】D【解析】【分析】求函数定义域得集合 A,求函数值域得集合 B,取交集即可得答案【详解】由函数 y ln(9 x2) ,得 9 x20,即( x+3) ( x3)0,解得:3 x3,所以集合 A(3,3) ,由函数 0,得集合 B(0,+) ,则 AB 故选: D【点睛】本题考查交集的运算及函数定义域值域的求法,属于基础题.2.设复数 满足 ,则 ( )A. 5 B. C. 2 D. 1【答案】B【解析】【分
2、析】利用复数的四则运算将复数化简,然后求模即可.【详解】由 ,得 ,则 .故选:B.【点睛】本题考查复数的四则运算和复数模长的计算公式,属于简单题.- 2 -3.抛物线 的准线方程为( )A. B. C. D. 【答案】C【解析】【分析】将方程转为标准方程,即可得到准线方程 y=- .【详解】由 ,得 ,所以准线方程为 ,故选:C.【点睛】本题考查抛物线的标准方程以及简单的几何性质,属于简单题.4.在 中, , , 所对的边分别为 , , ,已知 , , ,则 ( )A. B. C. D. 【答案】A【解析】【分析】利用余弦定理求得 a,再利用正弦定理即得结果.【详解】由余弦定理: ,得 ,由
3、正弦定理: .故选:A【点睛】本题考查正弦定理和余弦定理公式的应用,属于基础题型.5.执行如图所示的程序框图,若输入的 ,则输出的 , 的值分别为( )- 3 -A. 3,5 B. 4,7 C. 5,9 D. 6,11【答案】C【解析】执行第一次循环后, , ,执行第二次循环后, ,执行第三次循环后, , ,执行第四次循环后,此时 ,不再执行循环体,故选 C.点睛:对于比较复杂的流程图,可以模拟计算机把每个语句依次执行一次,找出规律即可.6.某四棱锥的三视图如图所示,已知该四棱锥的体积为 40,则其最长侧棱与底面所成角的正切值为( ) A. B. C. D. 【答案】A【解析】【分析】由三视图
4、可知,该几何体是底面为矩形的四棱锥,利用线面角的定义求解即可【详解】由三视图可知,该四棱锥的底面是长为 6,宽为 5 的矩形,设高为 ,由 ,解得 ,由图可知最长侧棱为 PC,因为 PA 垂直于底面 ABCD,则 PC 在底面的射影为 AC,则最长侧 PC 与底面所成角为PCA,- 4 -其 tanPCA=故选:A【点睛】本题考查几何体的三视图的运用和直线与平面所成角的求法,考查空间想象能力以及计算能力7.把函数 的图象上各点的横坐标缩短到原来的 (纵坐标不变) ,再将图象向左平移 个单位长度,则所得图象( )A. 在 上单调递增 B. 关于 对称C. 最小正周期为 D. 关于 轴对称【答案】
5、A【解析】【分析】利用三角函数的平移伸缩变换得到新的函数,然后利用正弦函数的单调性、周期性、以及对称性,检验即可得到答案【详解】将 图象上各点的横坐标缩短到原来的 (纵坐标不变).得到函数 的图象,再将图象向左平移 个单位长度,得到函数 ,即 的图象.显然函数是非奇非偶函数,最小正周期为 ,排除选项 C,D;令 ,得 ,不关于 对称,排除选项 B;令 ,得 ,所得函数在 上单调递增,故 正确.故选:A【点睛】本题考查函数 y Asin( x+)的图象变换规律,考查正弦函数的单调性、周期- 5 -性、以及对称性,属于基础题8.已知 , 满足约束条件 则 的取值范围是( )A. B. C. D.
6、【答案】D【解析】【分析】画出约束条件表示的可行域,利用目标函数的几何意义求解即可【详解】由线性约束条件作出可行域如图,其中 表示可行域内的点 与点 连线的斜率的倒数, A(2,2) ; B(1,0) ; kAD ,kDB - ,可知点 与点 连线的斜率的范围是 ,所以 的取值范围是 .故选: D【点睛】线性规划中的最值问题主要涉及三个类型:1.分式形式 :与斜率有关的最值问题:表示定点 P 与可行域内的动点 M(x,y)连线的斜率.2. 一次形式 z=ax+by:与直线的截距有关的最值问题, 特别注意斜率范围及截距符号.3. 与距离有关的最值问题 :表示定点 P 到可行域内的动点 N(x,y
7、)的距离.9.已知 的面积为 6,若在 内部随机取一个点 ,则使 的面积大于 2 的概率为- 6 -( )A. B. C. D. 【答案】C【解析】【分析】根据几何概型的公式转化为对应区域面积比值进行计算即可【详解】如图, , , ,当点 在线段 DE 上时 的面积等于 2,若使 的面积大于 2,则点 P 应在 内部,易知 ,则使 的面积大于 2 的概率为 .故选:C.【点睛】本题考查几何概型的概率计算,根据条件转化为对应区域面积是解决本题的关键10.已知等差数列 的公差为-2,前 项和为 ,若 , , 为某三角形的三边长,且该三角形有一个内角为 ,则 的最大值为( )A. 5 B. 11 C
8、. 20 D. 25【答案】D【解析】【分析】由公差 d=-2 可知数列单调递减,再由余弦定理结合通项可求得首项,即可求出前 n 项和,从而得到最值.【详解】等差数列 的公差为-2,可知数列单调递减,则 , , 中 最大, 最小,又 , , 为三角形的三边长,且最大内角为 ,由余弦定理得 ,设首项为 ,- 7 -即 得 ,所以 或 ,又 即 , 舍去, ,d=-2前 项和 .故 的最大值为 .故选:D【点睛】本题考查等差数列的通项公式和前 n 项和公式的应用,考查求前 n 项和的最值问题,同时还考查了余弦定理的应用.11.在直角三角形 中, , , , 在 斜边 的中线 上,则的最大值为( )
9、A. B. C. D. 【答案】B【解析】【分析】建立平面直角坐标系,写出各点坐标,利用向量的坐标运算转为求二次函数的最值.【详解】以 为坐标原点,以 , 方向分别为 轴, 轴正方向建立平面直角坐标系,则 , ,BC 中点 D( 则直线 AD 方程为 y=设 ,所以 , , , .则当 x= 时 的最大值为 . 故选:B【点睛】本题考查数量积在平面几何中的应用,建立坐标系是常用的方法,属于基础题.- 8 -12.已知函数 ,若方程 恰有 5 个不同的根,则 的取值范围是( )A. B. C. D. 【答案】B【解析】【分析】当 x0 时,对函数求导判断单调性求出最值,即可画出函数的图像,设 t
10、 f( x) ,则 ,结合图像分析即可得到答案.【详解】当 时, , ,当 时, ,函数 单调递减;当 时, ,函数 单调递增,所以 ,当 时, 的图象恒过点 ,当 , 时, ,当 , 时, ,作出大致图象如图所示.方程 有 5 个不同的根,即方程 有五个解,设 ,则 .结合图象可知,当 时,方程 有三个根 , ,( , ) ,于是 有一个解, 有一个解, 有三个解,共有 5 个解,而当 时,结合图象可知,方程 不可能有 5 个解.综上所述:方程 在 时恰有 5 个不同的根.- 9 -故选:B【点睛】本题考查函数零点的判定,考查数形结合的解题思想方法及分类讨论的数学思想方法,属中档题第卷二、填
11、空题(将答案填在答题纸上)13. 的展开式中 的系数为_【答案】-1080【解析】【分析】利用二项展开式的通项公式求出第 r+1 项,令 x 的指数为 2 可求 x2的系数【详解】 的展开式的通项公式为 ,由 5 r2 解得 r3,则 的系数为 .故答案为:-1080【点睛】本题考查二项展开式的运用,考查求特定项的系数,熟练运用公式求解即可.14.已知 ,则 _【答案】【解析】【分析】利用余弦的两角差公式将 展开然后利用辅助角公式计算即可得到答案.【详解】 , .故答案为:【点睛】本题考查两角和差公式以及辅助角公式的应用,考查计算能力,属于基础题.15.三棱锥 的每个顶点都在球 的表面上, 平
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 湖北省 十堰市 2019 届高三 数学 元月 调研 考试 试题 解析 DOC
