2018年中考数学真题分类汇编第二期专题23直角三角形与勾股定理试题含解析201901253123.doc
《2018年中考数学真题分类汇编第二期专题23直角三角形与勾股定理试题含解析201901253123.doc》由会员分享,可在线阅读,更多相关《2018年中考数学真题分类汇编第二期专题23直角三角形与勾股定理试题含解析201901253123.doc(36页珍藏版)》请在麦多课文档分享上搜索。
1、1直角三角形与勾股定理一.选择题1.(2018江苏淮安3 分)如图,菱形 ABCD 的对角线 AC.BD 的长分别为 6 和 8,则这个菱形的周长是( )A20 B24 C40 D48【分析】由菱形对角线的性质,相互垂直平分即可得出菱形的边长,菱形四边相等即可得出周长【解答】解:由菱形对角线性质知,AO= AC=3,BO= BD=4,且 AOBO,则 AB= =5,故这个菱形的周长 L=4AB=20故选:A【点评】本题考查了菱形面积的计算,考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算 AB 的长是解题的关键,难度一般2.(2018山东东营市3 分)如图
2、所示,圆柱的高 AB=3,底面直径 BC=3,现在有一只蚂蚁想要从 A 处沿圆柱表面爬到对角 C 处捕食,则它爬行的最短距离是( )A B C D【分析】要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解【解答】解:把圆柱侧面展开,展开图如右图所示,点 A.C 的最短距离为线段 AC 的长在 RtADC 中,ADC=90,CD=AB=3,AD 为底面半圆弧长,AD=1.5,2所以 AC= ,故选:C【点评】本题考查了平面展开最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答3.(2018湖州3 分)如图,已知在ABC 中,BAC90,点 D 为
3、BC 的中点,点 E 在 AC 上,将CDE 沿DE 折叠,使得点 C 恰好落在 BA 的延长线上的点 F 处,连结 AD,则下列结论不一定正确的是( )A. AE=EF B. AB=2DEC. ADF 和ADE 的面积相等 D. ADE 和FDE 的面积相等【答案】C【解析】分析:先判断出BFC 是直角三角形,再利用三角形的外角判断出 A 正确,进而判断出 AE=CE,得出 CE 是ABC 的中位线判断出 B 正确,利用等式的性质判断出 D 正确详解:如图,连接 CF,点 D 是 BC 中点, BD=CD,由折叠知, ACB= DFE, CD=DF, BD=CD=DF, BFC 是直角三角形
4、, BFC=90, B= BFD, EAF= B+ ACB= BFD+ DFE= AFE, AE=EF,故 A 正确,由折叠知, EF=CE, AE=CE, BD=CD,3B. C. D. DE 是 ABC 的中位线, AB=2DE,故 B 正确, BD=DF, AE=CE, S ADE=S CDE,由折叠知, CDE FDE, S CDE=S FDE, S ADE=S FDE,故 D 正确, C 选项不正确,故选:C点睛:此题主要考查了折叠的性质,直角三角形的判定和性质,三角形的中位线定理,作出辅助线是解本题的关键4. ( 2018广 西 北 海 3分 ) 如 图 , 矩 形 纸 片 ABC
5、D, AB4, BC3, 点 P 在 BC 边 上 , 将 CDP 沿 DP 折叠 , 点 C落在点 E 处, PE.DE 分别交 AB 于点 O、 F,且 OP OF,则 cos ADF 的值为11 13 15 1713 15 17 19【答案】C【考点】折叠问题:勾股定理列方程,解三角形,三角函数值【解析】由题意得:Rt DCPRt DEP,所以 DC DE4, CP EPA.4在 Rt OEF 和 Rt OBP 中, EOF BOP, B E, OP OFRt OEFRt OBP(AAS),所以 OE OB, EF BP设 EF 为 x,则 BP x, DF DE EF4 x,又因为 B
6、F OF OB OP OE PE PC, PC BC BP3 x5所以, AF AB BF4(3 x)1 x在 Rt DAF 中, AF2 AD2 DF2,也就是 (1 x)2 32 (4 x)23 3 3 17解之得, x 5,所以 EF 5, DF 4 5 5AD 15最终 ,在 Rt DAF 中, cos ADF DF 17【 点 评 】 本 题 由 题 意 可 知 , Rt DCP Rt DEP 并推理出 R t OEF RtOBP, 寻 找 出 合 适 的 线 段 设 未 知 数 , 运 用 勾 股 定 理 列 方 程 求 解 , 并 代 入 求 解出 所 求 cos 值 即 可 得
7、 。5(2018 年湖南省娄底市)如图,由四个全等的直角三角形围成的大正方形的面积是169,小正方形的面积为 49,则 sincos=( )A B C D【分析】分别求出大正方形和小正方形的边长,再利用勾股定理列式求出 AC,然后根据正弦和余弦的定义即可求 sin 和 cos 的值,进而可求出 sincos 的值【解答】解:小正方形面积为 49,大正方形面积为 169,小正方形的边长是 7,大正方形的边长是 13,在 RtABC 中,AC 2+BC2=AB2,即 AC2+(7+AC) 2=132,整理得,AC 2+7AC60=0,解得 AC=5,AC=12(舍去),BC= =12,sin= =
8、 ,cos= = ,sincos= = ,故选:D6【点评】本题考查了勾股定理的证明,锐角三角形函数的定义,利用勾股定理列式求出直角三角形的较短的直角边是解题的关键6. (2018 湖南长沙 3.00 分)我国南宋著名数学家秦九韶的著作数书九章里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为 5 里,12 里,13 里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1 里=500 米,则该沙田的面积为( )A7.5 平方千米 B15 平方千米 C75 平方千米 D750 平方千米【分析】直接利
9、用勾股定理的逆定理进而结合直角三角形面积求法得出答案【解答】解:5 2+122=132,三条边长分别为 5 里,12 里,13 里,构成了直角三角形,这块沙田面积为: 550012500=7500000(平方米)=7.5(平方千米) 故选:A【点评】此题主要考查了勾股定理的应用,正确得出三角形的形状是解题关键二.填空题1. (2018湖北襄阳3 分)已知 CD 是ABC 的边 AB 上的高,若CD= , AD=1,AB=2AC,则 BC 的长为 2 或 2 【分析】分两种情况:当ABC 是锐角三角形,如图 1,当ABC 是钝角三角形,如图 2,分别根据勾股定理计算 AC 和 BC 即可【解答】
10、解:分两种情况:当ABC 是锐角三角形,如图 1,CDAB,CDA=90,CD= ,AD=1,AC=2,AB=2AC,7AB=4,BD=41=3,BC= = =2 ;当ABC 是钝角三角形,如图 2,同理得:AC=2,AB=4,BC= = =2 ;综上所述,BC 的长为 2 或 2 故答案为:2 或 2 【点评】本题考查了三角形的高、勾股定理的应用,在直角三角形中常利用勾股定理计算线段的长,要熟练掌握2.(2018江苏徐州3 分)边长为 a 的正三角形的面积等于 【分析】根据正三角形的性质求解【解答】解:过点 A 作 ADBC 于点 D,ADBC,BD=CD= a,AD= = a,面积则是:
11、a a= a2【点评】此题主要考查了正三角形的高和面积的求法,比较简单3.(2018江苏徐州3 分)如图,RtABC 中,B=90,AB=3cm,AC=5cm,将ABC 折叠,使点 C 与 A 重合,得折痕 DE,则ABE 的周长等于 7 cm8【分析】根据勾股定理,可得 BC 的长,根据翻折的性质,可得 AE 与 CE 的关系,根据三角形的周长公式,可得答案【解答】解:在 RtABC 中,B=90,AB=3cm,AC=5cm,由勾股定理,得 BC= =4由翻折的性质,得 CE=AEABE 的周长=AB+BE+AE=AB+BE+CE=AB+BC=3+4=7故答案为:7【点评】本题考查了翻折的性
12、质,利用了勾股定理,利用翻折的性质得出 CE 与 AE 的关系是阶梯关键,又利用了等量代换4.(2018江苏无锡2 分)已知ABC 中,AB=10,AC=2 ,B=30,则ABC 的面积等于 15 或 10 【分析】作 ADBC 交 BC(或 BC 延长线)于点 D,分 AB.AC 位于 AD 异侧和同侧两种情况,先在 RtABD 中求得 AD.BD 的值,再在 RtACD 中利用勾股定理求得 CD 的长,继而就两种情况分别求出 BC 的长,根据三角形的面积公式求解可得【解答】解:作 ADBC 交 BC(或 BC 延长线)于点 D,如图 1,当 AB.AC 位于 AD 异侧时,在 RtABD
13、中,B=30,AB=10,AD=ABsinB=5,BD=ABcosB=5 ,在 RtACD 中,AC=2 ,CD= = = ,则 BC=BD+CD=6 ,S ABC = BCAD= 6 5=15 ;9如图 2,当 AB.AC 在 AD 的同侧时,由知,BD=5 ,CD= ,则 BC=BDCD=4 ,S ABC = BCAD= 4 5=10 综上,ABC 的面积是 15 或 10 ,故答案为 15 或 10 【点评】本题主要考查解直角三角形,解题的关键是熟练掌握三角函数的运用、分类讨论思想的运算及勾股定理5.(2018江苏无锡2 分)如图,已知XOY=60,点 A 在边 OX 上,OA=2过点
14、A 作ACOY 于点 C,以 AC 为一边在XOY 内作等边三角形 ABC,点 P 是ABC 围成的区域(包括各边)内的一点,过点 P 作 PDOY 交 OX 于点 D,作 PEOX 交 OY 于点 E设OD=a,OE=b,则 a+2b 的取值范围是 2a+2b5 【分析】作辅助线,构建 30 度的直角三角形,先证明四边形 EODP 是平行四边形,得EP=OD=a,在 RtHEP 中,EPH=30,可得 EH 的长,计算 a+2b=2OH,确认 OH 最大和最小值的位置,可得结论【解答】解:过 P 作 PHOY 交于点 H,PDOY,PEOX,四边形 EODP 是平行四边形,HEP=XOY=6
15、0,EP=OD=a,RtHEP 中,EPH=30,EH= EP= a,a+2b=2( a+b)=2(EH+EO)=2OH,当 P 在 AC 边上时,H 与 C 重合,此时 OH 的最小值=OC= OA=1,即 a+2b 的最小值是 2;当 P 在点 B 时,OH 的最大值是:1+ = ,即(a+2b)的最大值是 5,2a+2b510【点评】本题考查了等边三角形的性质、直角三角形 30 度角的性质、平行四边形的判定和性质,有难度,掌握确认 a+2b 的最值就是确认 OH 最值的范围6.(2018江苏淮安3 分)如图,在 RtABC 中,C=90,AC=3,BC=5,分别以点 A.B为圆心,大于
16、AB 的长为半径画弧,两弧交点分别为点 P、Q,过 P、Q 两点作直线交 BC 于点 D,则 CD 的长是 【分析】连接 AD 由 PQ 垂直平分线段 AB,推出 DA=DB,设 DA=DB=x,在 RtACD 中,C=90,根据 AD2=AC2+CD2构建方程即可解决问题;【解答】解:连接 ADPQ 垂直平分线段 AB,DA=DB,设 DA=DB=x,在 RtACD 中,C=90,AD 2=AC2+CD2,x 2=32+(5x) 2,解得 x= ,11CD=BCDB=5 = ,故答案为 【点评】本题考查基本作图,线段的垂直平分线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角
17、三角形解决问题7.(2018江苏苏州3 分)如图,88 的正方形网格纸上有扇形 OAB 和扇形 OCD,点O,A,B,C,D 均在格点上若用扇形 OAB 围成一个圆锥的侧面,记这 个圆锥的底面半径为 r1;若用扇形 OCD 围成另个圆锥的侧面,记这个圆锥的底面半径为 r2,则 的值为 【分析】由 2r 1= 、2r 2= 知 r1= 、r 2=,据此可得 = ,利用勾股定理计算可得【解答】解:2r 1= 、2r 2= ,r 1= 、r 2= , = = = = ,故答案为: 【点评】本题主要考查圆锥的计算,解题的关键是掌握圆锥体底面周长与母线长间的关系式及勾股定理8.(2018江苏苏州3 分)
18、如图,在 RtABC 中,B=90,AB=2 ,BC= 将ABC绕点 A 按逆时针方向旋转 90得到ABC,连接 BC,则 sinACB= 12【分析】根据勾股定理求出 AC,过 C 作 CMAB于 M,过 A 作 ANCB于 N,求出BM、CM,根据勾股定理求出 BC,根据三角形面积公式求出 AN,解直角三角形求出即可【解答】解:在 RtABC 中,由勾股定理得:AC= =5,过 C 作 CMAB于 M,过 A 作 ANCB于 N,根据旋转得出 AB=AB=2 ,BAB=90,即CMA=MAB=B=90,CM=AB=2 ,AM=BC= ,BM=2 = ,在 RtBMC 中,由勾股定理得:BC
19、= = =5,S ABC = = ,5AN=2 2 ,解得:AN=4,sinACB= = ,故答案为: 【点评】本题考查了解直角三角形、勾股定理、矩形的性质和判定,能正确作出辅助线是解此题的关键9.(2018江苏苏州3 分 )如图,已知 AB=8,P 为线段 AB 上的一个动点,分别以 AP,PB为边在 AB 的同侧作菱形 APCD 和菱形 PBFE,点 P,C,E 在一条直线上,DAP=60M,N分别是对角线 AC,BE 的中点当点 P 在线段 AB 上移动时,点 M,N 之间的距离最短为 2(结果留根号) 13【分析】连接 PM、PN首先证明MPN=90设 PA=2a,则PB=82a,PM
20、=a,PN= (4a) ,构建二次函数,利用二次函数的性质即可解决问题;【解答】解:连接 PM、PN四边形 APCD,四边形 PBFE 是菱形,DAP=60,APC=120,EPB=60,M,N 分别是对角线 AC,BE 的中点,CPM= APC=60,EPN= EPB=30,MPN=60+30=90,设 PA=2a,则 PB=82a,PM=a,PN= (4a) ,MN= = = ,a=3 时,MN 有最小值,最小值为 2 ,故答案为 2 【点评】本题考查菱形的性质、勾股定理二次函数的性质等知识,解题 的关键是学会添加常用辅助线,构建二次函数解决最值问题10. (2018杭州4 分)折叠矩形纸
21、片 ABCD 时,发现可以进行如下操作:把ADE 翻折,点 A 落在 DC 边上的点 F 处,折痕为 DE,点 E 在 AB 边上;把纸片展开并铺平;把CDG 翻折,点 C 落在直线 AE 上的点 H 处,折痕为 DG,点 G 在 BC 边上,若AB=AD+2,EH=1,则 AD=_。【答案】 或 3 【考点】勾股定理,矩形的性质,正方形的性质,翻折变换(折叠问题) 14【解析】 【解答】当点 H 在线段 AE 上时把ADE 翻折,点 A 落在 DC 边上的点 F 处,折痕为 DE,点 E 在 AB 边上四边形 ADFE 是正方形AD=AEAH=AE-EH=AD-1把CDG 翻折,点 C 落在
22、直线 AE 上的点 H 处,折痕为 DG,点 G 在 BC 边上DC=DH=AB=AD+2在 RtADH 中,AD 2+AH2=DH2AD 2+(AD-1) 2=(AD+2) 2解之:AD=3+2 ,AD=3-2 (舍去)AD=3+2 当点 H 在线段 BE 上时则 AH=AE-EH=AD+1在 RtADH 中,AD 2+AH2=DH2AD 2+(AD+1) 2=(AD+2) 2解之:AD=3,AD=-1(舍去)故答案为: 或 3【分析】分两种情况:当点 H 在线段 AE 上;当点 H 在线段 BE 上。根据的折叠,可得出四边形 ADFE 是正方形,根据正方形的性质可得出 AD=AE,从又AB
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 年中 数学 分类 汇编 第二 专题 23 直角三角形 勾股定理 试题 解析 201901253123 DOC

链接地址:http://www.mydoc123.com/p-954572.html