2018_2019学年高中数学第二章数列章末检测新人教A版必修5.doc
《2018_2019学年高中数学第二章数列章末检测新人教A版必修5.doc》由会员分享,可在线阅读,更多相关《2018_2019学年高中数学第二章数列章末检测新人教A版必修5.doc(16页珍藏版)》请在麦多课文档分享上搜索。
1、1第二章 数 列章末检测一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的1已知数列 na是等差数列,若 12a, 43a,则公差 dA 0 B 2C D 2在等比数列 na中,若 12, 46a,则数列 na的前 5项和 SA 30 B 31C 6 D 643设等差数列 na的前 项和为 nS,若 58a, 3S,则 9aA 8 B 12C 16 D 44设等比数列 na的前 项和为 nS,若 12a, 36S,则 A 0或 8 B 10或 8C 1 D 或5设等差数列 na和 b的前 n 项和分别为 nS, T,若对任意的 n*N,都有231nST,则5A B914C2031D
2、 76已知数列 na是等比数列, 1a,且 14, 2a, 3成等差数列,则 234aA 7 B 12C 14 D 647已知数列 na是各项均为正数的等比数列, 12a,设其前 n项和为 nS,若 1a,2, 3成等差数列,则 6SA 8 B 79C 70 D 318已知等差数列 na的前 项和为 nS,若 80且 9S,则当 nS最大时 A B 5C 4 D 39在等差数列 na中,已知238389a,且 0na,则数列 na的前 10项和10SA B 1C 3 D 510在等差数列 na中,已知 3576a, 18a,则数列 34na的前 项和nSA12B 2nCnD 111已知数列 n
3、a满足 1, 1|2|nnaa,其前 n项和为 nS,则下列说法正确的个数为数列 na是等差数列;数列 na是等比数列;23na;132nA0 B1C2 D3312已知数列 na满足 12,1()nna*N,则使 1210ka 成立的最大正整数 k的值为A 198 B 9C 20 D 201二、填空题:请将答案填在题中横线上13在等差数列 na中,已知 12, 3510a,则 7a_14已知数列 的前 项和nS,则数列 n的通项公式na_15设等差数列 na的前 项和为 n若 10ma, 210mS,则正整数m_16用 x表示不超过 x的最大整数,例如 3, ., .32已知数列na满足 1,
4、21nna,则122018 _三、解答题:解答应写出文字说明、证明过程或演算步骤17若数列 na满足 1, 2a,且 21nna,则称数列 na为 M 数列小明同学在研究该数列时发现许多有趣的性质,如:由 21可得21nn,所以 12n343122()()()n naaaa,另外小明还发现下面两条性质,请你给出证明 (1) 24621n ;(2) 3naa 418已知等差数列 na的前 n 项和为 nS,且 1a, 452Sa(1)求数列 的通项公式;(2)设1nb,求数列 nb的前 项和 nT519设等差数列 na的前 项和为 nS,等比数列 nb的前 项和为 nT,已知 1a,1b, 23
5、(1)若 37,求数列 nb的通项公式;(2)若 T,且 0n,求 S620已知数列 na的前 项和为 nS,点 (,)n在抛物线231yx上,各项都为正数的等比数列 nb满足 214, 6b(1)求数列 a, n的通项公式;(2)记 nC,求数列 nC的前 项和 nT721已知等比数列 na的前 项和312nS,等差数列 nb的前 5项和为 30,且714b(1)求数列 n, b的通项公式;(2)求数列 a的前 项和 nT822已知公差大于零的等差数列 na的前 项和为 nS,且 3417a, 25a(1)求数列 na的通项公式;(2)若数列 nb是等差数列,且nbc,求非零常数 c的值(3
6、)设 1nCa, nT为数列 nC的前 项和,是否存在正整数 M,使得8nMT对任意的 *N均成立?若存在,求出 的最小值;若不存在,请说明理由91 【答案】D【解析】由 12a, 43a可得 2(2)d,解得 2d,故选 D2 【答案】C【解析】设等比数列 na的公比为 q,由题意可得3418aq,即 2q,所以552(1)62S,故选 C4 【答案】B【解析】设等比数列 na的公比为 q,因为 12a, 36S,所以236Sq,即20,解得 或 1q,所以 416a或4a,所以 410S或 48,故选 B5 【答案】B【解析】由题可得195192292314aaSbbT,故选 B6 【答案
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 _2019 学年 高中数学 第二 数列 检测 新人 必修 DOC
