[考研类试卷]考研数学三(矩阵的特征与特征向量)模拟试卷3及答案与解析.doc
《[考研类试卷]考研数学三(矩阵的特征与特征向量)模拟试卷3及答案与解析.doc》由会员分享,可在线阅读,更多相关《[考研类试卷]考研数学三(矩阵的特征与特征向量)模拟试卷3及答案与解析.doc(14页珍藏版)》请在麦多课文档分享上搜索。
1、考研数学三(矩阵的特征与特征向量)模拟试卷 3 及答案与解析一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。1 设 A,B,A+B,A -1+B-1 均为 n 阶可逆矩阵,则(A -1+B-1)-1 等于(A)A -1+B-1(B) A+B(C) A(A+B)-1B(D)(A+B) -12 设函数 f(x)在(,+)内有定义,x 00 是函数 f(x)的极大值点,则( ) (A)x 0 必是函数 f(x)的驻点(B) x0 必是函数f( x)的最小值点(C)对一切 x0 都有 f(x)f(x0)(D)x 0 必是函数f(x)的极小值点3 函数 yC 1exC 2e2xxe x 满
2、足的一个微分方程是( ) (A)y-y2y3xe x(B) yy2y3e x(C) yy2y3e x(D)yy2y3xe x4 设 A 为 mn 矩阵,齐次线性方程组 Ax0 仅有零解的充分条件是 ( ) (A)A 的列向量线性相关(B) A 的行向量线性相关(C) A 的行向量线性无关(D)A 的列向量线性无关5 设 A 为 n 阶实矩阵,A T 为 A 的转置矩阵,则对于线性方程组(I)AX 0 和()ATAx0 必有( ) (A)() 的解是 (I)的解,(I)的解也是()的解(B) (I)的解是 ()的解,但 ()的解不是(I)的解(C) (I)的解不是 ()的解, ()的解也不是(I
3、)的解(D)() 的解是 (I)的解,但(I)的解不是()的解6 设函数 f(u)可导,yf(x 2)当自变量 x 在 x1 处取得增量x01 时,相应的函数增量y 的线性主部为 01,则 f(1)( )7 设 A,B,A+B,A -1+B-1 均为 n 阶可逆矩阵,则(A -1+B-1)-1 等于(A)A -1+B-1(B) A+B(C) A(A+B)-1B(D)(A+B) -18 设向量 可由向量组 1, 2,., m 线性表示,但不能由向量组(I): 1, 2,., m-1, 线性表示,记向量组(): 1, 2,., m-1,则(A) m 不能由 (I)线性表示,也不能由()线性表示(B
4、) m 不能由(I)线性表示,但可由()线性表示(C) m 可由(I)线性表示,也可由()线性表示(D) m 可由 (I)线性表示,但不可由()线性表示9 设 1, 2, ., s 均为 n 维列向量,A 是 mn 矩阵,下列选项正确的是(A)若 1, 2,., s 线性相关,则 A1,A 2, .,A s 线性相关(B)若 1, 2,., s 线性相关,则 A1,A 2,.,A s 线性无关(C)若 1, 2,., s 线性无关,则 A1,A 2,.,A s 线性相关(D)若 1, 2,., s 线性无关,则 A1,A 2, .,A s 线性无关10 设 1, 2, ., s 均为 n 维向
5、量,下列结论不正确的是(A)若对于任意一组不全为零的数 k1,k 2, ks,都有 k11+k22+kss0,则 1, 2,. , s ,线性无关(B)若 1, 2,., s 线性相关,则对于任意一组不全为零的数k1,k 2,k s,有 k11+k22+kss=0(C) 1, 2,., s 线性无关的充分必要条件是此向量组的秩为 s.(D) 1, 2,., s 线性无关的必要条件是其中任意两个向量线性无关11 设 1, 2 是矩阵 A 的两个不同的特征值,对应的特征向量分别为 1, 2,则1, A(1+2)线性无关的充分必要条件是(A) 10(B) 20(C) 1=0(D) 2=012 设向量
6、组 1, 2, 3 线性无关,则下列向量组线性相关的是(A) 1-2, 2-3, 3-1 (B) 1+2, 2+3, 3+1 (C) 1-22, 2-23, 3-21 (D) 1+22, 2+23, 3+21 13 设向量组 I: 1, 2,., r 可由向量组: 1, 2,., s 线性表示下列命题正确 的是(A)若向量组 I 线性无关,则 rs(B)若向量组 I 线性相关,则 rs.(C)若向量组线性无关,则 rs(D)若向量组线性相关,则 rs14 设有任意两个 n 维向量组 1, 2,., m 和 1, 2,., m, 若存在两组不全为零的数 1, 2,., m,k1,k 2,.,k
7、m, 使( 1+k1)+2+k2)2+.+(m+km)m+=(1-k1)1+(2-k2)2+( m-km)m=0, 则(A) 1, 2,., m 和 1, 2,., m 都线性相关(B) 1, 2,., m 和 1, 2,., m 都线性_无关(C) 1+1, 2+2, m+m, 1-1, 2-2, m-m 线性无关(D) 1+1, 2+2, m+m, 1-1, 2-2, m-m 线性相关15 设 A,B 为满足 AB=0 的任意两个非零矩阵,则必有(A)A 的列向量组线性相关,B 的行向鞋组线性相关(B) A 的列向量组线性相关,B 的列向量组线性相关(C) A 的行向量组线性相关,B 的行
8、向量组线性相关(D)A 的行向量组线性相关,B 的列向量组线性相关16 设有向量组 1=(1,-1 ,2,4), 2=(0,3,1,2), 3=(3,0,7,14), 4=(1,-2,2,0) , 5=(2,1,5,10),则该向量组的极大线性无关组是(A) 1, 2, 3.(B) 1, 2, 4(C) 1, 2, 5(D) 1, 2, 4, 517 设 A 是 mn 矩阵,B 是 nm 矩阵,则线性方程组(AB)x=0(A)当 nm 时仅有零解(B)当 nm 时必有非零解(C)当 mn 时仪有零解(D)当 mn 时必有非零解18 设 n 阶矩阵 A 的伴随矩阵 A*0,若 1, 2, 3,
9、4 是非齐次线性方程组 Ax=b的互不相等的解,则对应的齐次线性方程组 Ax=0 的基础解系(A)不存在(B)仅含一个非零解向量(C)含有两个线性无关的解向量(D)含有三个线性无关的解向量19 设 A 为 43 矩阵, 1, 2, 3 是非齐次线性方程组 Ax= 的 3 个线性无关的解,k1,k 2 为任意常数,则 Ax= 的通解为(A)( 2+3)/2+k1(2-1)(B) (2-3)/2+k1(2-1) (C) (2+3)/2+k1(2-1)+k2(3-1)(D)( 2-3)/2+k1(2-1)+k2(3-1)20 已知 1, 2 是非齐次线性方程组 Ax=b 的两个不同的解, 1, 2
10、是对应齐次线性方程组 Ax=0 的基础解系, k1,k 2 为任意常数,则方程组 Ax=b 的通解必是(A)k 11+k2(1+2)+(1-2)/2(B) k11+k2(1-2)+(1+2)/2(C) k11+k2(1+2)+(1-2)/2(D)k 11+k2(1-2)+(1-2)/221 非齐次线性方程组 Ax=b 中未知量个数为 n,方程个数为 m,系数矩阵 A 的秩为 r,则(A)r=m 时,方程组 Ax=b 有解(B) r=n 时,方程组 Ax=b 有唯一解(C) m=n 时,方程组 Ax=b 有唯一解(D)rn 时,方程组 Ax=b 有无穷多解二、填空题22 设矩阵 A 满足 A2+
11、A-4E=0,其中 E 为单位矩阵,则(A-E) -1=_.23 若四阶矩阵 A 与 B 为相似矩阵,A 的特征值为 12、13、14、15,则行列式B -1E_24 设 n 维向量 =(a,0,0,a) T,a T, B=E+1/a T 其中 A 的逆矩阵为 B,则 a=_.25 设矩阵 A 满足 A2+A-4E=0,其中 E 为单位矩阵,则(A-E) -1=_.26 设行向量组(2,1,1,1),(2,1,a ,a),(3, 2,1,a) ,(4,3,2,1)线性相关,且 a1,则 a=_.三、解答题解答应写出文字说明、证明过程或演算步骤。27 设向量 1, 2,., t 是齐次方程组 A
12、x=0 的一个基础解系,向量 不是方程组Ax=0 的解即 A0试证明:向量组 ,+ 1,+ 2,+ t 线性无关 考研数学三(矩阵的特征与特征向量)模拟试卷 3 答案与解析一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。1 【正确答案】 C【试题解析】 因为 A,B,A+B 均可逆,则有 (A -1+B-1)-1=(EA-1+B-1E)-1 =(B-1BA-1+B-1AA-1)-1=B-1(B+A)A-1-1 =(A-1)-1(B+A)-1(B-1)-1=A(A+B)-1B 故应选(C) 注意,一般情况下(A+B) -1A-1+B-1,不要与转置的性质相混淆【知识模块】 二次型2
13、 【正确答案】 D【知识模块】 二次型3 【正确答案】 C【知识模块】 二次型4 【正确答案】 D【知识模块】 二次型5 【正确答案】 A【知识模块】 二次型6 【正确答案】 0.5【知识模块】 二次型7 【正确答案】 C【试题解析】 因为 A,B,A+B 均可逆,则有 (A -1+B-1)-1=(EA-1+B-1E)-1 =(B-1BA-1+B-1AA-1)-1=B-1(B+A)A-1-1 =(A-1)-1(B+A)-1(B-1)-1=A(A+B)-1B 故应选(C) 注意,一般情况下(A+B) -1A-1+B-1,不要与转置的性质相混淆【知识模块】 矩阵的特征与特征向量8 【正确答案】 B
14、【试题解析】 因为 可由 1, 2,., m 线性表示,故可设 =k11,k 22,.,k mm 由于 不能由 1, 2,., m-1 线性表示,故上述表达式中必有 km0因此 m=1/km(-k11-k22-km-1m-1) 即 m 可由()线性表示,可排除(A)、 (D) 若 m 可由(I)线性表示,设 m=l11+lm-1m-1,则 =(k 1+kml1)1+(k2+kml2)2+(km-1+kmlm-1)m-1 与题设矛盾,故应选 (B)【知识模块】 矩阵的特征与特征向量9 【正确答案】 A【试题解析】 因为(A 1, A2,.,A s=A(1, 2,., s),所以 r(A1,A 2
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考研 试卷 数学 矩阵 特征 特征向量 模拟 答案 解析 DOC
