ITU-R BO 795-1992 Techniques for Alleviating Mutual Interference between Feeder Links to the BSS《到BSS的馈线链路之间减轻相互干扰的技术》.pdf
《ITU-R BO 795-1992 Techniques for Alleviating Mutual Interference between Feeder Links to the BSS《到BSS的馈线链路之间减轻相互干扰的技术》.pdf》由会员分享,可在线阅读,更多相关《ITU-R BO 795-1992 Techniques for Alleviating Mutual Interference between Feeder Links to the BSS《到BSS的馈线链路之间减轻相互干扰的技术》.pdf(3页珍藏版)》请在麦多课文档分享上搜索。
1、CCIR RECMNn795 92 4855232 0520030 781 W Rec. 795 RECOMMENDATiON 795* TECHNIQUES FOR ALLEVIATING MUTUAL INTERFERENCE BETWEEN FEEDER LINKS TO THE BSS (Question 86/1 I) 161 (1992) The CCIR, considering a) that interference on the feeder link will impact on the overail broadcasting-satellite service (BS
2、S) system performance; b) that the number of feeder link stations is limited compared to the number of BSS receiving earth stations; c) that special measures are possible and feasible to alleviate the impact of mutual interference between feeder links; d) that the most critical cases of feeder link
3、interference are for the case of cross-polar channels transmitted to Co-located satellites; e) that for the case of Co-located satellites advantage can be taken of the difference in directivity between the BSS receive station antenna and the feeder link transmit antenna in order to minimize the inte
4、rference between cross- polar channels, recommends that one or more of the following techniques be considered to alleviate mutual interference between feeder the use of a homogeneous set of feeder link technical parameters between feeder links serving BSS satellites that are closely spaced in orbit;
5、 adjustments of the maximum level of e.i.r.p. of potential interfering feeder links or feeder links subject to excessive interference, provided that adequate carrier-to-noise and carrier-to-interference ratios on the adjusted feeder links are maintained; when studies indicate that harmful interferen
6、ce could be experienced between closely spaced satellites the off-axis CO- and cross-polar side-lobe reference patterns of the earth station transmitting antenna should meet the 29 - 25 log 0 (dBi) side-lobe discrimination pattern down to -10 dBi; where insufficient cross-polar isolation is achieved
7、, the off-axis cross-polar side-lobe reference pattern of the earth station transmitting antenna be limited to 24 - 25 log 8 down to -10 dBi for the cross-polar pattern; modifying the satellite receiving antenna beam pattern shape, size andor side-lobe response e.g., a multiple beam or shaped beam a
8、ntenna); off-setting the beam-pointing direction of the satellite receiving antenna subject to maintaining the target carrier-to-noise ratio; setting an upper limit on the feeder link margin allocated to rain attenuation; improving the beam pointing accuracy for the satellite receiving antenna; sepa
9、rating satellite orbital positions by, for example ? 0.2“, from the nominal position (see Annex 1). * This Recommendation should be brought to the attention of Study Group 4. COPYRIGHT International Telecommunications Union/ITU RadiocommunicationsLicensed by Information Handling ServicesCCLR RECMN*7
10、95 92 Li855212 0520031 b1i8 M 162 Rec, 795 ANNEX 1 interference between cs-located satellites The most critical cases of feeder-link interference are for cross-polar channels transmitted to co-located satellites. For the case where co-located s?tellites use a common cross-polarized channel, a protec
11、tion ratio of 40 dB is needed. Discrimination of more than about 30 dB from the siitellite receiving antenna pattern requires geographical separation of feeder-link service arens. The discrimination is the difference in eo-polar gain towards points within the wanted service area and the cross-polar
12、gain towards tlie closest point in the interfering service area. Satellite antenna patterns are typically given as functions of cp/w where cp is the exocentrie angle between the on-axis direction and the direction of interest, and cpo is the 3 dB betamwidth of the satellite ,antenna. The discriminat
13、ion between wanted and interfering signals is then the difference between the gain towards the wanted feeder-link station nnd the gain at angle cp. If the maximum discrimination is taken to be the opposite of the on-axis gain, 40 dB discrimination at the edge of service area would require an on-axis
14、 gain of 43 dB and viilues of cplcp greater than 2. Satellite antenna gcains of 43 dB are not consistent with country-wide feeder-link service areas for many countries. Provisions for inhomogeneities in received signais due to rain attenuation and unequal transmit power levels would require even hig
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ITURBO7951992TECHNIQUESFORALLEVIATINGMUTUALINTERFERENCEBETWEENFEEDERLINKSTOTHEBSS BSS 馈线 之间 减轻 相互 干扰

链接地址:http://www.mydoc123.com/p-790143.html