ASTM C1239-2013 Standard Practice for Reporting Uniaxial Strength Data and Estimating Weibull Distribution Parameters for Advanced Ceramics《高级陶瓷用报告单轴强度数据和评估维泊尔分布参数的标准实施规程》.pdf
《ASTM C1239-2013 Standard Practice for Reporting Uniaxial Strength Data and Estimating Weibull Distribution Parameters for Advanced Ceramics《高级陶瓷用报告单轴强度数据和评估维泊尔分布参数的标准实施规程》.pdf》由会员分享,可在线阅读,更多相关《ASTM C1239-2013 Standard Practice for Reporting Uniaxial Strength Data and Estimating Weibull Distribution Parameters for Advanced Ceramics《高级陶瓷用报告单轴强度数据和评估维泊尔分布参数的标准实施规程》.pdf(18页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: C1239 13Standard Practice forReporting Uniaxial Strength Data and Estimating WeibullDistribution Parameters for Advanced Ceramics1This standard is issued under the fixed designation C1239; the number immediately following the designation indicates the year oforiginal adoption or, in the
2、 case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This practice covers the evaluation and reporting ofuniaxial strength data and the esti
3、mation of Weibull probabilitydistribution parameters for advanced ceramics that fail in abrittle fashion (see Fig. 1). The estimated Weibull distributionparameters are used for statistical comparison of the relativequality of two or more test data sets and for the prediction ofthe probability of fai
4、lure (or, alternatively, the fracturestrength) for a structure of interest. In addition, this practiceencourages the integration of mechanical property data andfractographic analysis.1.2 The failure strength of advanced ceramics is treated as acontinuous random variable determined by the flaw popula
5、tion.Typically, a number of test specimens with well-definedgeometry are failed under isothermal, well-defined displace-ment and/or force-application conditions. The force at whicheach test specimen fails is recorded. The resulting failure stressdata are used to obtain Weibull parameter estimates as
6、sociatedwith the underlying flaw population distribution.1.3 This practice is restricted to the assumption that thedistribution underlying the failure strengths is the two-parameter Weibull distribution with size scaling. Furthermore,this practice is restricted to test specimens (tensile, flexural,p
7、ressurized ring, etc.) that are primarily subjected to uniaxialstress states. The practice also assumes that the flaw populationis stable with time and that no slow crack growth is occurring.1.4 The practice outlines methods to correct for bias errorsin the estimated Weibull parameters and to calcul
8、ate confi-dence bounds on those estimates from data sets where allfailures originate from a single flaw population (that is, a singlefailure mode). In samples where failures originate from mul-tiple independent flaw populations (for example, competingfailure modes), the methods outlined in Section 9
9、 for biascorrection and confidence bounds are not applicable.1.5 This practice includes the following:SectionScope 1Referenced Documents 2Terminology 3Summary of Practice 4Significance and Use 5Interferences 6Outlying Observations 7Maximum Likelihood Parameter Estimators forCompeting Flaw Distributi
10、ons8Unbiasing Factors and Confidence Bounds 9Fractography 10Examples 11Keywords 12Computer Algorithm MAXL AppendixX1Test Specimens with Unidentified FractureOriginsAppendixX21.6 The values stated in SI units are to be regarded as thestandard per IEEE/ASTM SI 10.2. Referenced Documents2.1 ASTM Standa
11、rds:2C1145 Terminology of Advanced CeramicsC1322 Practice for Fractography and Characterization ofFracture Origins in Advanced CeramicsE6 Terminology Relating to Methods of Mechanical TestingE178 Practice for Dealing With Outlying ObservationsE456 Terminology Relating to Quality and StatisticsIEEE/A
12、STM SI 10 American National Standard for Use ofthe International System of Units (SI): The Modern MetricSystem3. Terminology3.1 Proper use of the following terms and equations willalleviate misunderstanding in the presentation of data and inthe calculation of strength distribution parameters.3.1.1 c
13、ensored strength datastrength measurements (thatis, a sample) containing suspended observations such as thatproduced by multiple competing or concurrent flaw popula-tions.1This practice is under the jurisdiction of ASTM Committee C28 on AdvancedCeramicsand is the direct responsibility of Subcommitte
14、e C28.01 on MechanicalProperties and Performance.Current edition approved Aug. 1, 2013. Published September 2013. Originallyapproved in 1993. Last previous edition approved in 2007 as C1239 07. DOI:10.1520/C1239-13.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM
15、Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States13.1.1.1 Consider a sample where
16、fractography clearly estab-lished the existence of three concurrent flaw distributions(although this discussion is applicable to a sample with anynumber of concurrent flaw distributions). The three concurrentflaw distributions are referred to here as distributions A, B, andC. Based on fractographic
17、analyses, each test specimenstrength is assigned to a flaw distribution that initiated failure.In estimating parameters that characterize the strength distri-bution associated with flaw distribution A, all test specimens(and not just those that failed from Type A flaws) must beincorporated in the an
18、alysis to ensure efficiency and accuracyof the resulting parameter estimates. The strength of a testspecimen that failed by a Type B (or Type C) flaw is treated asa right censored observation relative to the A flaw distribution.Failure due to a Type B (or Type C) flaw restricts, or censors,the infor
19、mation concerning Type A flaws in a test specimen bysuspending the test before failure occurred by a Type A flaw(1).3The strength from the most severe Type A flaw in thosetest specimens that failed from Type B (or Type C) flaws ishigher than (and thus to the right of) the observed strength.However,
20、no information is provided regarding the magnitudeof that difference. Censored data analysis techniques incorpo-rated in this practice utilize this incomplete information toprovide efficient and relatively unbiased estimates of thedistribution parameters.3.2 Definitions:3.2.1 competing failure modes
21、distinguishably differenttypes of fracture initiation events that result from concurrent(competing) flaw distributions.3.2.2 compound flaw distributionsany form of multipleflaw distribution that is neither pure concurrent nor pureexclusive. A simple example is where every test specimencontains the f
22、law distribution A, while some fraction of the testspecimens also contains a second independent flaw distributionB.3.2.3 concurrent flaw distributionstype of multiple flawdistribution in a homogeneous material where every testspecimen of that material contains representative flaws fromeach independe
23、nt flaw population. Within a given testspecimen, all flaw populations are then present concurrentlyand are competing with each other to cause failure. This termis synonymous with “competing flaw distributions.”3.2.4 effective gage sectionthat portion of the test speci-men geometry that has been incl
24、uded within the limits ofintegration (volume, area, or edge length) of the Weibulldistribution function. In tensile test specimens, the integrationmay be restricted to the uniformly stressed central gagesection, or it may be extended to include transition and shankregions.3.2.5 estimatorwell-defined
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTMC12392013STANDARDPRACTICEFORREPORTINGUNIAXIALSTRENGTHDATAANDESTIMATINGWEIBULLDISTRIBUTIONPARAMETERSFORADVANCEDCERAMICS

链接地址:http://www.mydoc123.com/p-463866.html