ASHRAE HVAC SYSTEMS AND EQUIPMENT SI CH 11-2012 STEAM SYSTEMS.pdf
《ASHRAE HVAC SYSTEMS AND EQUIPMENT SI CH 11-2012 STEAM SYSTEMS.pdf》由会员分享,可在线阅读,更多相关《ASHRAE HVAC SYSTEMS AND EQUIPMENT SI CH 11-2012 STEAM SYSTEMS.pdf(16页珍藏版)》请在麦多课文档分享上搜索。
1、11.1CHAPTER 11 STEAM SYSTEMSAdvantages. 11.1Fundamentals. 11.1Effects of Water, Air, and Gases 11.2Heat Transfer . 11.2Basic Steam System Design . 11.2Steam Source 11.2Boiler Connections 11.3Design Steam Pressure 11.4Piping. 11.5Condensate Removal from Temperature-Regulated Equipment. 11.6Steam Trap
2、s 11.7Pressure-Reducing Valves 11.9Terminal Equipment . 11.11Convection Steam Heating. 11.11Steam Distribution . 11.12Temperature Control 11.13Heat Recovery 11.14Combined Steam and Water Systems . 11.15Commissioning. 11.16TEAM systems use the vapor phase of water to supply heat orS kinetic energy th
3、rough a piping system. As a source of heat,steam can heat a conditioned space with suitable terminal heat trans-fer equipment such as fan-coil units, unit heaters, radiators, and con-vectors (finned tube or cast iron), or through a heat exchanger thatsupplies hot water or some other heat transfer me
4、dium to the termi-nal units. In addition, steam is commonly used in heat exchangers(shell-and-tube, plate, or coil types) to heat domestic hot water andsupply heat for industrial and commercial processes such as in laun-dries and kitchens. Steam is also used as a heat source for certaincooling proce
5、sses such as single-stage and two-stage absorptionrefrigeration machines.ADVANTAGESSteam offers the following advantages: Steam flows through the system unaided by external energysources such as pumps.Because of its low density, steam can be used in tall buildingswhere water systems create excessive
6、 pressure.Terminal units can be added or removed without making basicchanges to the design.Steam components can be repaired or replaced by closing thesteam supply, without the difficulties associated with drainingand refilling a water system.Steam is pressure/temperature dependent; therefore, the sy
7、stemtemperature can be controlled by varying either steam pressure ortemperature.Steam can be distributed throughout a heating system with littlechange in temperature.In view of these advantages, steam is applicable to the followingfacilities:Where heat is required for process and comfort heating, s
8、uch as inindustrial plants, hospitals, restaurants, dry-cleaning plants, laun-dries, and commercial buildingsWhere the heating medium must travel great distances, such as infacilities with scattered building locations, or where the buildingheight would result in excessive pressure in a water systemW
9、here intermittent changes in heat load occurFUNDAMENTALSSteam is the vapor phase of water and is generated by adding moreheat than required to maintain its liquid phase at a given pressure,causing the liquid to change to vapor without any further increase intemperature. Table 1 illustrates the press
10、ure/temperature relationshipand various other properties of steam.Temperature is the thermal state of both liquid and vapor at anygiven pressure. The values shown in Table 1 are for dry saturatedsteam. The vapor temperature can be raised by adding more heat,resulting in superheated steam, which is u
11、sed (1) where higher tem-peratures are required, (2) in large distribution systems to compen-sate for heat losses and to ensure that steam is delivered at thedesired saturated pressure and temperature, and (3) to ensure thatthe steam is dry and contains no entrained liquid that could damagesome turb
12、ine-driven equipment.Enthalpy of the liquid hf(sensible heat) is the amount of heat inkilojoules required to raise the temperature of a kilogram of waterfrom 0C to the boiling point at the pressure indicated.Enthalpy of evaporation hfg(latent heat of vaporization) is theamount of heat required to ch
13、ange a kilogram of boiling water at agiven pressure to a kilogram of steam at the same pressure. Thissame amount of heat is released when the vapor is condensed backto a liquid.Enthalpy of the steam hg(total heat) is the combined enthalpy ofliquid and vapor and represents the total heat above 0C in
14、thesteam.Specific volume, the reciprocal of density, is the volume of unitmass and indicates the volumetric space that 1 kg of steam or wateroccupies.An understanding of the above helps explain some of the follow-ing unique properties and advantages of steam:Most of the heat content of steam is stor
15、ed as latent heat, whichpermits large quantities of heat to be transmitted efficiently withlittle change in temperature. Because the temperature of saturatedsteam is pressure dependent, a negligible temperature reductionoccurs from the reduction in pressure caused by pipe frictionlosses as steam flo
16、ws through the system. This occurs regardlessof the insulation efficiency, as long as the boiler maintains theinitial pressure and the steam traps remove the condensate. Con-versely, in a hydronic system, inadequate insulation can signifi-cantly reduce fluid temperature.Steam, as all fluids, flows f
17、rom areas of high pressure to areas oflow pressure and is able to move throughout a system without anexternal energy source. Heat dissipation causes the vapor tocondense, which creates a reduction in pressure caused by theThe preparation of this chapter is assigned to TC 6.1, Hydronic and SteamEquip
18、ment and Systems.11.2 2012 ASHRAE HandbookHVAC Systems and Equipment (SI)dramatic change in specific volume (1600:1 at atmosphericpressure).As steam gives up its latent heat at the terminal equipment, thecondensate that forms is initially at the same pressure and temper-ature as the steam. When this
19、 condensate is discharged to a lowerpressure (as when a steam trap passes condensate to the returnsystem), the condensate contains more heat than necessary tomaintain the liquid phase at the lower pressure; this excess heatcauses some of the liquid to vaporize or “flash” to steam at thelower pressur
20、e. The amount of liquid that flashes to steam can becalculated as follows:% Flash Steam = (1)wherehf1= enthalpy of liquid at pressure p1hf 2= enthalpy of liquid at pressure p2hfg2= latent heat of vaporization at pressure p2Flash steam contains significant and useful heat energy that canbe recovered
21、and used (see the section on Heat Recovery). Thisreevaporation of condensate can be controlled (minimized) by sub-cooling the condensate within the terminal equipment before it dis-charges into the return piping. The volume of condensate that issubcooling should not be so large as to cause a signifi
22、cant loss ofheat transfer (condensing) surface.EFFECTS OF WATER, AIR, AND GASESEnthalpies in Table 1 are for dry saturated steam. Most systemsoperate near these theoretically available values, but the presence ofwater and gases can affect enthalpy, as well as have other adverseoperating effects.Dry
23、saturated steam is pure vapor without entrained water drop-lets. However, some amount of water usually carries over as con-densate forms because of heat losses in the distribution system.Steam quality describes the amount of water present and can bedetermined by calorimeter tests. The quality of sat
24、urated steam canbe improved by installing a separator in-line before the equipment.Although steam quality might not have a significant effect on theheat transfer capabilities of the terminal equipment, the backing upor presence of condensate can be significant because the enthalpy ofcondensate hfis
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASHRAEHVACSYSTEMSANDEQUIPMENTSICH112012STEAMSYSTEMSPDF

链接地址:http://www.mydoc123.com/p-455088.html