ASHRAE FUNDAMENTALS IP CH 17-2013 Residential Cooling and Heating Load Calculations.pdf
《ASHRAE FUNDAMENTALS IP CH 17-2013 Residential Cooling and Heating Load Calculations.pdf》由会员分享,可在线阅读,更多相关《ASHRAE FUNDAMENTALS IP CH 17-2013 Residential Cooling and Heating Load Calculations.pdf(16页珍藏版)》请在麦多课文档分享上搜索。
1、17.1CHAPTER 17 RESIDENTIAL COOLING AND HEATING LOAD CALCULATIONSResidential Features. 17.1Calculation Approach 17.1Other Methods . 17.2Residential Heat Balance (RHB) Method 17.2Residential Load Factor (RLF) Method. 17.2Common Data and Procedures 17.3Cooling Load 17.8Heating Load 17.11Load Calculatio
2、n Example. 17.12Symbols 17.14HIS chapter covers cooling and heating load calculationTprocedures for residential buildings, including detailed heat-balance methods that serve as the basis for cooling load calculation.Simple cooling load procedures, suitable for hand calculations, areprovided for typi
3、cal cases. Straightforward heating load calculationprocedures are also included.Procedures in this chapter are based on the same fundamentals asthe nonresidential methods in Chapter 18. However, many charac-teristics distinguish residential loads, and Chapter 18s proceduresshould be applied with car
4、e to residential applications.Additional information about residential heating and cooling isfound in Chapter 1 of the 2011 ASHRAE HandbookHVAC Appli-cations and Chapter 10 of the 2012 ASHRAE HandbookHVACSystems and Equipment.RESIDENTIAL FEATURESWith respect to heating and cooling load calculation a
5、nd equip-ment sizing, the following unique features distinguish residencesfrom other types of buildings:Smaller Internal Heat Gains. Residential system loads are pri-marily imposed by heat gain or loss through structural componentsand by air leakage or ventilation. Internal heat gains, particularlyt
6、hose from occupants and lights, are small compared to those incommercial or industrial structures.Varied Use of Spaces. Use of spaces in residences is more flexiblethan in commercial buildings. Localized or temporary tempera-ture excursions are often tolerable.Fewer Zones. Residences are generally c
7、onditioned as a singlezone or, at most, a few zones. Typically, a thermostat located inone room controls unit output for multiple rooms, and capacitycannot be redistributed from one area to another as loads changeover the day. This results in some hour-to-hour temperature vari-ation or swing that ha
8、s a significant moderating effect on peakloads, because of heat storage in building components.Greater Distribution Losses. Residential ducts are frequentlyinstalled in attics or other unconditioned buffer spaces. Duct leak-age and heat gain or loss can require significant increases in unitcapacity.
9、 Residential distribution gains and losses cannot beneglected or estimated with simple rules of thumb.Partial Loads. Most residential cooling systems use units of rel-atively small capacity (about 12,000 to 60,000 Btu/h cooling,40,000 to 120,000 Btu/h heating). Because loads are largely deter-mined
10、by outdoor conditions, and few days each season are designdays, the unit operates at partial load during most of the season;thus, an oversized unit is detrimental to good system performance,especially for cooling in areas of high wet-bulb temperature.Dehumidification Issues. Dehumidification occurs
11、during cool-ing unit operation only, and space condition control is usually lim-ited to use of room thermostats (sensible heat-actuated devices).Excessive sensible capacity results in short-cycling and severelydegraded dehumidification performance.In addition to these general features, residential b
12、uildings can becategorized according to their exposure:Single-Family Detached. A house in this category usually hasexposed walls in four directions, often more than one story, and aroof. The cooling system is a single-zone, unitary system with asingle thermostat. Two-story houses may have a separate
13、 coolingsystem for each floor. Rooms are reasonably open and generallyhave a centralized air return. In this configuration, both air andload from rooms are mixed, and a load-leveling effect, whichrequires a distribution of air to each room that is different from apure commercial system, results. Bec
14、ause the amount of air sup-plied to each room is based on the load for that room, proper loadcalculation procedures must be used.Multifamily. Unlike single-family detached units, multifamilyunits generally do not have exposed surfaces facing in all direc-tions. Rather, each unit typically has a maxi
15、mum of three exposedwalls and possibly a roof. Each living unit has a single unitarycooling system or a single fan-coil unit and the rooms are rela-tively open to one another. This configuration does not have thesame load-leveling effect as a single-family detached house.Other. Many buildings do not
16、 fall into either of the precedingcategories. Critical to the designation of a single-family detachedbuilding is well-distributed exposure so there is not a short-duration peak; however, if fenestration exposure is predominantlyeast or west, the cooling load profile resembles that of a multifam-ily
17、unit. On the other hand, multifamily units with both east andwest exposures or neither east nor west exposure exhibit load pro-files similar to single-family detached.CALCULATION APPROACHVariations in the characteristics of residences can lead to surpris-ingly complex load calculations. Time-varying
18、 heat flows combineto produce a time-varying load. The relative magnitude and patternof the heat flows depends on the building characteristics and expo-sure, resulting in a building-specific load profile. In general, an hour-by-hour analysis is required to determine that profile and find itspeak.In
19、theory, cooling and heating processes are identical; a commonanalysis procedure should apply to either. Acceptable simplificationsare possible for heating; however, for cooling, different approachesare used.Heating calculations use simple worst-case assumptions: no solaror internal gains, and no hea
20、t storage (with all heat losses evaluatedinstantaneously). With these simplifications, the heating problem isreduced to a basic UAt calculation. The heating procedures in thisThe preparation of this chapter is assigned to TC 4.1, Load Calculation Dataand Procedures.17.2 2013 ASHRAE HandbookFundament
21、alschapter use this long-accepted approach, and thus differ only indetails from prior methods put forth by ASHRAE and others.The cooling procedures in this chapter were extensively revised in2005, based on the results of ASHRAE research project RP-1199,also supported by the Air-Conditioning Contract
22、ors of America(ACCA) (Barnaby et al. 2004, 2005). Although the complexity of res-idential cooling load calculations has been understood for decades,prior methods used a cooling load temperature difference/coolingload factor (CLTD/CLF) form requiring only hand-tractable arith-metic. Without such simp
23、lification, the procedures would not havebeen used; an approximate calculation was preferable to none at all.The simplified approaches were developed using detailed computermodels and/or empirical data, but only the simplifications were pub-lished. Now that computing power is routinely available, it
24、 is appro-priate to promulgate 24 h, equation-based procedures.OTHER METHODSSeveral residential load calculation methods have been publishedin North America over the last 30 years. All use the UAt heatingformulation and some variation of the CLTD/CLF approach forcooling.ACCA. Manual J, 8th edition (
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASHRAEFUNDAMENTALSIPCH172013RESIDENTIALCOOLINGANDHEATINGLOADCALCULATIONSPDF

链接地址:http://www.mydoc123.com/p-454709.html