ASHRAE AN-04-7-2-2004 Theoretical and Experimental Study of a New Absorption Refrigeration Cycle《新的吸收式制冷循环理论及实验研究》.pdf
《ASHRAE AN-04-7-2-2004 Theoretical and Experimental Study of a New Absorption Refrigeration Cycle《新的吸收式制冷循环理论及实验研究》.pdf》由会员分享,可在线阅读,更多相关《ASHRAE AN-04-7-2-2004 Theoretical and Experimental Study of a New Absorption Refrigeration Cycle《新的吸收式制冷循环理论及实验研究》.pdf(7页珍藏版)》请在麦多课文档分享上搜索。
1、AN-04-7-2 Theoretical and Experimental Study of a New Absorption Refrigeration Cycle Yongfang Zhong Student Member ASHRAE ABSTRACT A new auto-cascade absorption refrigeration cycle is proposed to obtain low refrigerating temperatures in order to widen the industry application ofabsorption refrigerat
2、ion. The characteristics of the new cycle are analyzed and compared to those of the traditional single-eflect absorption refrigeration cycle theoretically. Preliminary experiments are conducted and provide valuable experience for further research. INTRODUCTION With the rapidly rising cost of energy,
3、 low-temperature- level heat that was formerly rejected to the atmosphere in chemical and food plants is now often used to operate absorp- tion systems for refrigeration. Heat-driven absorption refng- eration, instead of work-driven compression refrigeration, greatly reduces expenses by utilizing wa
4、ste heat in applica- tions in many fields, such as chemistry and the food industry. In order to promote the use of absorption systems, a lot of work has been done to improve its efficiency (Srikhirin et a. 2002). However, the refrigerating temperature of the absorption cycle restricts its industrial
5、 application. Absorption machines commercially available today employed below 0C are ammo- nialwater systems, with ammonia as their refrigerant and water as their absorbent. The strong toxicity and highly irri- tating odor of ammonia are serious obstacles to its widespread use. If absorption systems
6、 can be widely used to obtain low temperatures, a portion of the heat rejected by a power plant, for example, can be utilized to freeze foods. The overall energy efficiency can be improved significantly. In this paper, a new auto-cascade absorption refrigeration cycle using a zeotropic mixture as a
7、refrigerant and DMF as an Guangming Chen absorbent is proposed to achieve low temperatures. The selec- tion of working fluids is based on our previous experiments and a literature review of absorption refrigerants. (N,N-dime- thylformamide, which is an organic solvent produced in large quantities th
8、roughout the world, is used in the chemical indus- try as a solvent, an intermediate, and an additive. It is a color- less liquid with a faint amine odor. It is completely miscible with water and most organic solvents and has a relatively low vapor pressure.) A diagram of the new auto-cascade absorp
9、tion refngera- tion system is shown in Figure 1. This cycle is derived from a compression refrigeration cycle applied to a liquefaction system for natural gas, where high-boiling-point gases are first liquefied and then used to condense low-boiling-point gases in cascade heat exchangers (Kleemenko 1
10、959; Little 1982). In Figure 1 Diagram of the new auto-cascade absorption refrigeration system. Yongfang Zhong is a graduate student in the Department of Mechanical Engineering, University of Illinois at Urbana-Champaign, Urbana, Ill. Guangming Chen is a professor at the Refrigeration and Cryogenic
11、Lab, Zhejiang University, China. 508 02004 ASHRAE. our new cycle, the refrigerant loop takes the mixed refrigerant vapor from the generator and directs it to the condenser where the high-boiling-point refrigerant is liquefied and the low- boiling-point refrigerant is subcooled by rejecting heat to a
12、 sink. The two-phase mixture is separated into vapor (which is rich in low-boiling-point refngerant and flows out from the top) and liquid (which is rich in high-boiling-point refrigerant and flows out from the bottom) at the separator. In this paper we call the vapor from the separator “Fl” and the
13、 liquid out of the separator “F2.” Then, F2 flows through a throttling valve into a cascade heat exchanger, where F2 evaporates to condense F1. After FI is liquefied in the heat exchanger, it passes through a cooling regenerator, then flows into an evap- orator via a throttling valve and evaporates
14、to provide a refrig- erating effect. Finally, F 1 from the evaporator and F2 from the cascade heat exchanger enter the absorber as a mixture. The solution circuit is the same as a single-effect absorption cycle, in which one condenser, one evaporator, one generator, and one absorber are used. In our
15、 new absorption cycle, the refrig- erant in the evaporator is subcooled both in the condenser and in the cascade heat exchanger before it evaporates to provide refrigerating effect. Therefore, it can provide lower refriger- ating temperatures than the traditional cycle, with one condenser under the
16、same operating conditions. Because a part of the refrigerants rejects heat to the other part of the refrigerants in a cascade heat exchanger and then is condensed, we call this cycle the “auto-cascade” absorption refrigeration cycle. The performance characteristics such as refrigerant composition an
17、d condensing temperature for this new cycle are investigated in this paper. In addition, the characteristics of the traditional single-effect absorption refrigeration cycle are analyzed under the same operating conditions. Some prelim- inary experiments are conducted to assess the feasibility of thi
18、s new cycle for low refrigerating temperature application. THEORETICAL CALCULATION The operating conditions discussed here are as follows: Tl = Tg= 140C, TIO= T,=-47”C, Tk= 35C (condensing temper- ature), T3=30”C, Tl,=30”C,P3,4= 100kPa,AT1=3”C(inthe cascade heat exchanger and the regenerator), AT2 =
19、 8C (in the heat exchanger in the solution circuit), and environmentally friendly R-23 and R-l34a are used in the calculation as mixed refrigerants. The refrigerating effect (e,) and COP (ratio of Q, to the heat required in the generator to accomplish this effect, Qg) under the various operating con
20、ditions are investigated with other conditions fixed. The characteristics of the tradi- tional single-effect cycle are also calculated for comparison for the same conditions. The analysis here is ideal thermody- namic calculation; energy change of the flow equals mass times change of enthalpy; the f
21、luid properties at each state point are calculated by thermal equations of state and two- phase equilibrium. All the calculation for the cycle and heat exchangers is based on mass and energy balance. Characteristics Analysis of the New Cycle COP and Q, vs. refrigerant composition. If the molar ratio
22、 of R-23 (molar ratio of R-23 is the ratio of the amount of R-23 in mole to the total amount of refriger- ants in mole) in the mixture is too low or too high, there will be little liquid of R-23 in the evaporator, and the new absorp- tion system cannot work normally. Therefore, the molar ratio of R-
23、23 discussed here ranges from 0.2 to 0.7. The refrigerating effect (Q,) and COP increase to a maxi- mum, then decrease as the molar ratio of R-23 increases (shown in Figure 2). The flow rate at point 5 (shown in Figure 1) increases as the molar ratio of R-23 increases; thus, the amount of heat (e5,)
24、 that is released from F1 in the cascade heat exchanger in order to lower the temperature of point 9 to (T7 + AT,) also increases. Simultaneously, the flow rate at point 6 decreases; thus, the amount of heat that is neces- sary to increase the temperature of point 8 to (T, - ATl) also decreases. The
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASHRAEAN04722004THEORETICALANDEXPERIMENTALSTUDYOFANEWABSORPTIONREFRIGERATIONCYCLE 吸收 制冷 循环 理论 实验 研究 PDF

链接地址:http://www.mydoc123.com/p-454557.html