ASHRAE 4844-2006 Literature Review on Calibration of Building Energy Simulation Programs Uses Problems Procedures Uncertainty and Tools《标定的建筑能耗模拟程式的文献综述 用途 新问题 新的程序不确定性和工具(RP-105.pdf
《ASHRAE 4844-2006 Literature Review on Calibration of Building Energy Simulation Programs Uses Problems Procedures Uncertainty and Tools《标定的建筑能耗模拟程式的文献综述 用途 新问题 新的程序不确定性和工具(RP-105.pdf》由会员分享,可在线阅读,更多相关《ASHRAE 4844-2006 Literature Review on Calibration of Building Energy Simulation Programs Uses Problems Procedures Uncertainty and Tools《标定的建筑能耗模拟程式的文献综述 用途 新问题 新的程序不确定性和工具(RP-105.pdf(15页珍藏版)》请在麦多课文档分享上搜索。
1、4844 (RP- 1 05 1 ) Literature Review on Calibration of Building Energy Simulation Programs: Uses, Problems, Procedures, Uncertainty, and Tools T. Agami Reddy, PhD, PE Member ASHRAE ABSTRACT Calibrated simulation is the process of using an existing building simulation computer program and ?tuning or
2、cali- brating the various inputs to the program so that observed energy use matches closely with that predicted by the simula- tion program. The two primary reasons for adopting this approach is that it allows (1) more reliable identijcation of energy savings and demand-reduction measures (involving
3、 equipment, operation, and/or control changes) in an existing building and (2) increased confidence in the monitoring und verification process once these measures are implemented. Historically, the calibration process has been an art form that inevitably relies on user knowledge, past experience, st
4、atisti- cal expertise, engineeringjudgment, and an abundance of trial and error: Despite widespread interest in the professional community, unfortunately no consensus guidelines have been published on how to perform a simulated calibration using detailed simulation programs. ASHAE initiated a resear
5、ch project (?-1 051) intended to cull the best tools, techniques, approaches, andprocedures from the existing body of research and develop a coherent and systematic calibration methodol- ogy that includes both ?parameter estimation ? and determi- nation of the uncertainty in the calibrated simulatio
6、n. This paper provides a pertinent and detailed literature review of calibrated simulation techniques, describing their strengths, weaknesses, and applicability, thus serving as a precursor to reporting the results of the research project in subsequent papers. BACKGROUND Calibration as Part of ECM I
7、dentification and Monitoring and Verification The oil shock of 1973 triggered a flurry of energy conser- vation activities especially by federal and state agencies. This led to the widespread initiation of demand-side management (DSM) projects especially targeted to residential and small commercial
8、building stock. Subsequently, in the 1980s, build- ing professionals started becoming aware of the potential and magnitude of energy conservation savings in large buildings (office, commercial, hospitals, retail, etc.). DSM measures implemented included any retrofit or operations practice, usually s
9、ome sort of passive load curtailment measure during the peak hours such as installing thermal storage systems, retrofits to save energy (such as delamping, energy efficient lamping, changing constant air volume CV systems into variable air volume VAV, demand meters in certain equip- ment such as chi
10、llers, and energy management and control systems EMCS for lighting load management). The drastic spurt in activity by energy service companies (ESCOs) led to numerous papers being published in this area (such as that by Schuldt and Romberger 19981 and various other publications reviewed later in thi
11、s paper) and standard development efforts by organizations such as ASHRAE (2002) and USDOE (IPMVP 2001). During the last few years, electric market transformation and utility deregulation have led to a new thinking toward more proactive load management of single and multiple buildings (Reddy andNorf
12、ord 2004; Norford and Reddy 2004). Though several facilities do implement such proactive load management practices, these are yet to achieve a sufficient level of maturity at this time. T. Agami Reddy is a professor in the Civil, Architectural, and Environmental Engineering Department, Drexel Univer
13、sity, Philadelphia, Pa. 226 02006 ASHRAE. The proper implementation of DSM measures involved first the identification of the appropriate energy conservation measures (ECMs), and then assessing their impact or perfor- mance once implemented. This need resulted in monitoring and verification (M (b) th
14、at on an annual basis, these indices were 1 1 .O% and 19.0%, respectively, for gashel and 9.2% and 15.0%, respectively, for electricity use; and (c) that on a monthly basis, these indices were 16.7% and 24.0% for total energyuse, 26.3% and35.0% forgasfuel use, and 18.7% and 30.0% for electricity use
15、, These values are higher than those recommended in ASHRAE Guideline 14, but it must be realized that this study was conducted about 25 years ago at the dawn of the building simulation era and did not require any submetering whatsoever. The results of another USDOE-funded study a few years later are
16、 documented in a report by TRC (1984). Only one large office building was selected, detailed monitoring was done to various end-uses, and the accuracy of the DOE-2 program algorithms was evaluated at hourly time scales for each of the four seasonal periods for several components, such as chillers, w
17、ater pumps, cooling towers, boilers, and second- ary system components. Measurement errors of the sensors were also accounted for. It was found that monthly predicted total energy use was lower by about 5% on average over the year as compared to measured energy use (though individual months showed m
18、uch greater variability: underprediction in July by 6% and overprediction in March by 12%). Values of such differences for each of the equipment are also specified. It must be noted that these results are building- and location- specific. The authors conclude that the ability of the DOE-2 simulation
19、 program to predict building energy use is within the accuracy of empirical measurements of building energy use. The approach adopted by Kaplan et al. (1990a, 1990b) in the framework of small ofice buildings within the Energy Edge program is to monitor several end-uses during short peri- ods and to
20、perform the calibration for these periods only as against a whole year. The short tuningperiods recommended are one month during a hot period, one month during a cold period, and one month in between. The authors studied shorter periods of a week but concluded that one-month intervals ASHRAE Transac
21、tions: Research 229 tended to better smooth variability. In general, the tuning process first corrected obvious simulation errors highlighted by the discrepancies, then adjusted for internal loads, and, finally, adjusted other inputs such as HVAC end-uses. Tuning tolerances of about 10% for whole-bu
22、ilding energy use on an annual basis were achieved. Hunn et al. (1992) describe a study using as-built draw- ings, site interviews, and whole-building electric use data for the Texas Capitol Building to calibrate DOE-2 to the pre-reno- vation energy use status. Energy savings due to the extensive re
23、novations could then be identified using post-renovation data. A similar methodology was adopted by Reddy et al. (1994) for a 250,000 fi2 university building in Austin using two months of pre-retrofit monitoring and site visits to identify the most significant end-use components. They were able to a
24、chieve calibration tolerances of 4.5% (monitored data were lower) in whole-building energy use for the entire seven months of pre-retrofit period and 2.8% for heating energy use. However, large differences in cooling energy during certain months (up to 10%) were detected. Norford et al. (1994) prese
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASHRAE48442006LITERATUREREVIEWONCALIBRATIONOFBUILDINGENERGYSIMULATIONPROGRAMSUSESPROBLEMSPROCEDURESUNCERTAINTYANDTOOLS

链接地址:http://www.mydoc123.com/p-454390.html