ASHRAE 4752-2005 Improving Laboratory Building Energy Performance and Indoor Air Quality Using a Laboratory Air-Handling Unit System (LAHU)《一个实验室空气处理机组系统(LAHU) 可用于改善室内空气质量和实验室建筑节能.pdf
《ASHRAE 4752-2005 Improving Laboratory Building Energy Performance and Indoor Air Quality Using a Laboratory Air-Handling Unit System (LAHU)《一个实验室空气处理机组系统(LAHU) 可用于改善室内空气质量和实验室建筑节能.pdf》由会员分享,可在线阅读,更多相关《ASHRAE 4752-2005 Improving Laboratory Building Energy Performance and Indoor Air Quality Using a Laboratory Air-Handling Unit System (LAHU)《一个实验室空气处理机组系统(LAHU) 可用于改善室内空气质量和实验室建筑节能.pdf(10页珍藏版)》请在麦多课文档分享上搜索。
1、4752 Improving Laboratory Building Energy Performance and Indoor Air Quality Using a Laboratory Air-Handling Unit System (LAHU) Yujie Cui Student Member ASHRAE ABSTRACT The laboratory air-handling unit (LAHU) system is designed to improve building energy performance and indoor air qualily (IAQ) in l
2、aboratory buildings. The LAHU system sends more (up to 100%) outside air to the ofice section and recirculates the ofice section air to the laboratory section. This theoretical study shows that the potential annual thermal energy savings varies from 20% up to 40% depending on the climate and ratio o
3、f ofice airflow to the laboratory section airflow. The LAHUprovides more outside air intake directly to the ofice section during both cold winter and hot summer months when the IAQ is critical for building occupants. When the ofice airflow ratio is less than 50%, the LAHUprovides close to 100% outsi
4、de air to the oflce section at all times. INTRODUCTION Modem research buildings often contain both laboratory and office sections. Conventionally dedicated AHU systems serve the two sections separately. The laboratory sections are designed to use 100% outside air, resulting in energy usage several t
5、imes higher than that in commercial buildings. To reduce energy costs, a number of energy conservation measures have been developed and implemented in laboratory buildings. These measures include exhaust air heat recovery, supply air reheat, variable air volume (VAV) fume hoods, usage-based control
6、devices (UBC), and integrated AHU systems. A significant amount of thermal energy can be recovered from the exhaust air by using “rotary wheel,” “fixed plate,” or “heat pipe” (thermosiphon) units (Bowlen 1974; Street and Setty 1983; Cames 1988). During winter, the outside air is warmed up by the exh
7、aust air to reduce preheat energy Mingsheng Liu, PhD, PE Member ASHRAE consumption. During summer, the hot outside air is pre-cooled by the exhaust air to reduce mechanical cooling. Exhaust air heat recovery has been thoroughly investigated (Moyer 1978; Barker 1994; Bard 1994) and has been installed
8、 in most of the facilities. Heat pipe with run-around coil is another energy-efficient measure to reduce thermal energy consumption (Hill and Jeter 1994; Scofield 1993). Two heat exchangers are separately installed in front of and behind the cooling coil. During summer, the heat exchanger in front o
9、f the cooling coil receives heat from the hot outside air, and the other coil behind the cooling coil discharges the heat into the supply airstream. During mild weather and winter, this system consumes exces- sive fan power without providing any thermal energy benefits. In addition, the heat pipe an
10、d run-around coils have relatively high cost. Its applications are limited. VAV and usage-based control (UBC) systems have been used to reduce heating and cooling energy consumption through reduced outside airflow. After ten years of VAV appli- cations in commercial buildings, VAV fume hoods and con
11、trol technologies were developed (Neuman and Rousseau 1986; Doley et al. 1993). The VAV fume hood maintains a constant sash face velocity. When the sash is partially closed, the exhaust air is proportionally reduced. The VAV fume hood reduces the exhaust airflow as much as 60% when the hood sash is
12、closed. When compared with the constant air volume fume hood, the outside air requirement from the AHU is significantly decreased. Consequently, both heating and cool- ing energy are reduced. The potential energy savings were investigated using a theoretical approach (Muny 1983; Davis and Benjamin 1
13、987; Moyer and Dungan 1987; Lentz and Seth 1989) as well as field experiments (Parker et al. 1993; Rabiah Yujie Cui is a PhD candidate and Mingsheng Liu is a professor and graduate study chair in the Department of Architectural Engineering, University of Nebraska-Lincoln. 02005 ASHRAE. 113 liil i- l
14、 ll Figure I Schematic diagram of the LAHU and Welkenbach 1993). A case study showed that VAV fume hoods used an average of 40% less outside air in a chemistry building (Bard 1995). UBC devices detect the presence of fume hood operators. When an operator is not present, the UBC reduces the fume hood
15、 face velocity to a lower value. When an operator is present, the UBC increases the face velocity to a normal oper- ation value. More and more new facilities are designed with the UBC although the cost is still significant. A single system that serves both the laboratory and office sections can sign
16、ificantly improve the buildings thermal energy and IAQ performance. The single system draws return air from the office section and provides supply air to both ofice and laboratory section at the same temperature. It reduces the total building outside air intake to the minimum and has a higher outsid
17、e air intake ratio to the office section. Charneux (2001) demonstrated that the single system increased the outside air intake ratio to 35% in one industry case and has lower initial cost as well. Since the laboratory section often requires a higher supply air temperature than the ofice section, the
18、 single system has to choose the lower value of the office and laboratory section supply air temperature. Consequently, a significant amount of thermal energy is wasted for reheat. The single system cannot take full advan- tages of the free cooling andior economizer opportunities. To further improve
19、 energy performance in laboratory buildings, an integrated AHU system is proposed. Because this system is specifically developed for laboratory buildings, it is called the “laboratory air-handling unit” (LAHU) system. This paper compares the energy performance and IAQ impacts of the LAHU system with
20、 a conventional separated AHU system. LAHU SYSTEM Figure 1 shows a schematic diagram of the LAHU system. The LAHU system serves both the office and labora- tory sections with two supply air fans (SF1 and SF2), one return air fan (RF), and fume hood exhaust fan(s). Supply air fan 1 (SF1) supplies air
21、 to the office section. Supply air fan 2 (SF2) supplies air to the laboratory section. The return fan circulates air from the office section to either supply fan 1 or 2, or both. In addition, return air can be sent either upstream or downstream of cooling coil 2 or in both locations. Supply air fan
22、2 must be a draw-through style when the return air needs to be sent downstream of cooling coil 2. The return air distribution to each supply air fan is modulated using return air dampers 1,2, and 3 and the relief air damper. The outside air intake to the LAHU system is modulated by outside air damp-
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASHRAE47522005IMPROVINGLABORATORYBUILDINGENERGYPERFORMANCEANDINDOORAIRQUALITYUSINGALABORATORYAIRHANDLINGUNITSYSTEMLAHU

链接地址:http://www.mydoc123.com/p-454335.html