ANSI ASTM F1964-2011 Standard Test Method for Performance of Pressure Fryers《压力炸锅的性能试验方法》.pdf
《ANSI ASTM F1964-2011 Standard Test Method for Performance of Pressure Fryers《压力炸锅的性能试验方法》.pdf》由会员分享,可在线阅读,更多相关《ANSI ASTM F1964-2011 Standard Test Method for Performance of Pressure Fryers《压力炸锅的性能试验方法》.pdf(12页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: F1964 11 An American National StandardStandard Test Method forPerformance of Pressure Fryers1This standard is issued under the fixed designation F1964; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last r
2、evision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method evaluates the energy consumption andcooking performance of pressure and kettle fryers. The foodservice oper
3、ator can use this evaluation to select a fryer andunderstand its energy efficiency and production capacity.1.2 This test method is applicable to floor model natural gasand electric pressure fryers.1.3 The fryer can be evaluated with respect to the following:1.3.1 Energy input rate (10.2),1.3.2 Prehe
4、at energy and time (10.4),1.3.3 Idle energy rate (10.5),1.3.4 Pilot energy rate (10.6, if applicable),1.3.5 Cooking energy rate and efficiency (10.9), and1.3.6 Production capacity (10.9).1.4 The values stated in inch-pound units are to be regardedas standard. The SI units given in parentheses are fo
5、r informa-tion only.1.5 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to
6、 use.2. Referenced Documents2.1 ANSI Standard:2ANSI Z83.11 Gas Food Service Equipment2.2 AOAC Standard:3AOAC Official Action 950.46 Air Drying to DetermineMoisture Content of Meat and Meat Products2.3 ASHRAE Standard:4ASHRAE 2-1986 (RA90) Engineering Analysis of Experi-mental Data3. Terminology3.1 D
7、efinitions:3.1.1 pressure fryer, nan appliance with a deep kettlecontaining oil or fat and covered by a heavy, gasketed lid witha pressure valve; the appliance kettle operates between 10 and12 psig.3.2 Definitions of Terms Specific to This Standard:3.2.1 cold zone, nthe volume in the fryer below the
8、heating elements or heat exchanger surface designed to remaincooler than the cook zone.3.2.2 cooking energy, ntotal energy consumed by the fryeras it is used to cook breaded chicken product under heavy- andlight-load conditions.3.2.3 cooking energy effciency, nquantity of energy im-parted to the chi
9、cken during the cooking process expressed asa percentage of the quantity of energy input to the fryer duringthe heavy tests.3.2.4 cooking energy rate, naverage rate of energy con-sumed by the fryer while cooking a heavy load of chicken.3.2.5 cook zone, nthe volume of oil in which food iscooked.3.2.6
10、 energy input rate, npeak rate at which a fryerconsumes energy (Btu/h or kW), typically reflected duringpreheat.3.2.7 idle energy rate, naverage rate of energy consumed(Btu/h or kW) by the fryer while holding or idling the fryingmedium at the thermostat(s) set point.3.2.8 pilot energy rate, naverage
11、 rate of energy consump-tion (Btu/h) by a fryers continuous pilot (if applicable).3.2.9 preheat energy, namount of energy consumed (Btuor kWh) by the fryer while preheating the frying medium fromambient room temperature to the calibrated thermostat(s) setpoint.1This test method is under the jurisdic
12、tion of ASTM Committee F26 on FoodService Equipment and is the direct responsibility of Subcommittee F26.06 onProductivity and Energy Protocol.Current edition approved June 1, 2011. Published August 2011. Originallyapproved in 1999. Last previous edition approved in 2005 as F1964 99 (2005).DOI: 10.1
13、520/F1964-11.2Available from American National Standards Institute (ANSI), 25 W. 43rd St.,4th Floor, New York, NY 10036.3Available from the Association of Official Analytical Chemists, 1111 N. 19thStreet, Arlington, VA 22209.4Available from American Society of Heating, Refrigerating, and Air-Conditi
14、oning Engineers, Inc. (ASHRAE), 1791 Tullie Circle, NE, Atlanta, GA30329.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States13.2.10 preheat rate, nthe average rate (F/min) at whichthe frying medium temperature is heated from ambient tem-p
15、erature to the fryers calibrated thermostat(s) set point.3.2.11 preheat time, ntime required for the frying mediumto preheat from ambient room temperature to the calibratedthermostat(s) set point.3.2.12 production capacity, nmaximum rate (lb/h) atwhich a fryer can bring the specified food product to
16、 a specifiedcooked condition.3.2.13 uncertainty, nmeasure of systematic and precisionerrors in specified instrumentation or measure of repeatabilityof a reported test result.4. Summary of Test Method4.1 The fryer under test is connected to the appropriate,metered energy source. The measured energy i
17、nput rate isdetermined and checked against the rated input before continu-ing with testing.4.2 The frying medium temperature in the cook zone ismonitored at a location chosen to represent the averagetemperature of the frying medium while the fryer is idled at325F. Fryer temperature calibration to 32
18、5F is achieved atthe location representing the average temperature of the fryingmedium.4.3 The preheat energy and time and idle energy rate aredetermined while the fryer is operating with the thermostat(s)set at a calibrated 325F. The rate of pilot energy consumptionalso is determined, when applicab
19、le, to the fryer under test.4.4 Energy consumption and time are monitored while thefryer is used to cook breaded chicken. Cooking energyefficiency, cooking energy rate, and production capacity aredetermined for heavy-load cooking tests.5. Significance and Use5.1 The energy input rate test is used to
20、 confirm that thefryer under test is operating in accordance with its nameplaterating.5.2 Fryer temperature calibration is used to ensure that thefryer being tested is operating at the specified temperature.Temperature calibration also can be used to evaluate andcalibrate the thermostat control dial
21、.5.3 Preheat energy and time can be used by food serviceoperators to manage their restaurants energy demands, and toestimate the amount of time required for preheating a fryer.5.4 Idle energy rate and pilot energy rate can be used toestimate energy consumption during noncooking periods.5.5 Preheat e
22、nergy, idle energy rate, pilot energy rate, andheavy-load cooking energy rates can be used to estimate thefryers energy consumption in an actual food service operation.5.6 Cooking energy efficiency is a direct measurement offryer efficiency at different loading scenarios. This informationcan be used
23、 by food service operators in the selection of fryers,as well as for the management of a restaurants energydemands.5.7 Production capacity is used by food service operators tochoose a fryer that matches their food output requirements.6. Apparatus6.1 Analytical Balance Scale, for measuring weights up
24、 to25 lb, with a resolution of 0.01 lb and an uncertainty of 0.01 lb.6.2 Barometer, for measuring absolute atmosphericpressure, to be used for adjustment of measured gas volume tostandard conditions. The barometer shall have a resolution of0.2 in. Hg and an uncertainty of 0.2 in. Hg.6.3 Canopy Exhau
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ANSIASTMF19642011STANDARDTESTMETHODFORPERFORMANCEOFPRESSUREFRYERS 压力 炸锅 性能 试验 方法 PDF

链接地址:http://www.mydoc123.com/p-432971.html