AGMA 05FTM04-2005 Tooth Meshing Stiffness Optimisation Based on Gear Tooth Form Determination for a Production Process Using Different Tools《用不同工具生产加工基于齿轮齿成型测定的齿啮合刚度优化》.pdf
《AGMA 05FTM04-2005 Tooth Meshing Stiffness Optimisation Based on Gear Tooth Form Determination for a Production Process Using Different Tools《用不同工具生产加工基于齿轮齿成型测定的齿啮合刚度优化》.pdf》由会员分享,可在线阅读,更多相关《AGMA 05FTM04-2005 Tooth Meshing Stiffness Optimisation Based on Gear Tooth Form Determination for a Production Process Using Different Tools《用不同工具生产加工基于齿轮齿成型测定的齿啮合刚度优化》.pdf(13页珍藏版)》请在麦多课文档分享上搜索。
1、05FTM04Tooth Meshing Stiffness Optimisation Based onGear Tooth Form Determination for a ProductionProcess Using Different Toolsby: Dr. Ing. U. Kissling, Dipl.- Ing. M. Raabe, Dr. M. Fish,KISSsoft AGTECHNICAL PAPERAmerican Gear Manufacturers AssociationTooth Meshing Stiffness Optimisation Based on Ge
2、arTooth Form Determination for a Production ProcessUsing Different ToolsDr. Ing. Ulrich Kissling, Dipl. Ing. Markus Raabe, Dr. Michael Fish,KISSsoft AGThe statements and opinions contained herein are those of the author and should not be construed as anofficial action or opinion of the American Gear
3、 Manufacturers Association.AbstractThe variation of the tooth meshing stiffness is a source of noise and the exact calculation of tooth form isimportant for the stiffness determination. For this purpose, software was written with the concept of anunlimited number of tools such as hobs, grinding disk
4、, and honing defining a manufacturing sequence. Thetooth shapes after each step to show the material removal, sliding and rolling vectors to optimize the tool lifeare determined. Additionally, meshing stiffness variation can be improved by optimization of final geargeometry with a calculation of the
5、 contact path under load. From this information the meshing stiffness isderived making it possible to study the effect of a proposed profile correction of a gear under different loads.Calculations with AGMA2001 or ISO6336 check the point with the highest root stress. Effect of a grindingnotch is als
6、o included.Copyright 2005American Gear Manufacturers Association500 Montgomery Street, Suite 350Alexandria, Virginia, 22314October, 2005ISBN: 1-55589-852-11Tooth Meshing Stiffness Optimisation based on Gear Tooth Form Determinationfor a Production Process Using Different ToolsDr. Ing. Ulrich Kisslin
7、g, Dipl.-Ing. Markus Raabe, Dr. Michael Fish, KISSsoft AGIntroductionThe methods used in gear production are inconstant development. In recent years form grind-ing (an alternative to the classic meshing grinding)has become the trend. Another example is a meth-od used mostly in automotive industry: t
8、o improvethe working life of tools and in order to get tooth formwith higher root strength, gears are produced usingup to three different pre-cutters plus a final honingor grinding process. One of the latest tendencies inthe development of optimized gears is to apply aspecial wave-form-like profile
9、modification duringthe finishing process for the reduction of transmis-sion error.These production methods require the develop-ment of appropriate calculation methods. In this pa-per the calculation of the resulting tooth form is de-scribed when several tools are used. Then, basedon this tooth form,
10、 the effective meshing stiffness(under load) and the stress calculation are dis-cussed.The variation of the tooth meshing stiffness duringoperation induces a deviation in the rotation-angleof the output gear from the nominal transmission ra-tio (transmission error) causing vibrations andnoise. The m
11、eshing stiffness variation can be im-proved through optimization of the gear geometry(transverse contact ratio and overlap ratio?),but the type of profile modification is also very im-portant for the stiffness under load.The current calculation method for the tooth resist-ance following either AGMA2
12、001 1 or ISO6336 2is based on the assumption of a tooth form pro-duced by one tool in a meshing process. The meth-od includes, when using a tool with protuberance,also a production process with a pre-cutter (withstock allowance for finishing) and final grinding orhoning process.This implies that the
13、 formulas in AGMA or ISO resis-tance calculation methods can not be applied withgears produced by form grinding or other non-con-ventional methods. The problem is that for the cal-culation of the tooth root stresses some values suchas tooth thickness and root rounding must beknown. The calculation m
14、ethod assumes that thetooth form is not exactly known, and therefore pres-ents formulas which permit calculation of the toothform just in the considered section of the tooth.These formulas assume production through ameshing process. But in principle, if the tooth form isgiven, the tooth can be calcu
15、lated by directly usingthe formulas proposed by the standards. Therefore,if the tooth form calculation is integrated into the re-sistance calculation software, AGMA or ISO stan-dards can be used for any production method.Tooth form calculation with different toolsIn most of the available gear calcul
16、ation software itis possible to calculate the tooth form when using astandard tool (hob, generating cutter or gear typecutter). Normally it is also possible to introduce agrinding allowance and so simulate a 2-step pro-duction process (cutting, then grinding). Answeringfrequent requests of users of
17、the widely recognizedgear calculation software KISSsoft 3, it was de-cided to implement a new approach for tooth formcalculation in the software.An unlimited number of tools such as hob, cuttingtool, gear-type cutter, grinding disk (generating orform grinding), and honing wheel can be defined inany
18、sequence desired. The tooth shape can be vi-sualised after every step, and different shapes canbe superimposed to show the material removal fromone step to another. The manufacturing processfrom tool to gear is also visualised, and sliding androlling velocity vectors are indicated (to optimise theto
19、ol life).Fig. 1 shows the different stages in getting to the de-finitive tooth form when using two cutters and a finalrectifying process. For the gear with a pressureangle n20, a pre-cutter with n25 is used. Thisleads to an increase of the tool service life andcreates a better rounding of the tooth
20、root. As theflank form should be identical to the final design, thebase diameter db of the gear has to remain ident-ical. Therefore the module of the tool must be in-creased by COS(20)/COS(25) for the pre-cutter.2Figure 1. Tooth form generated with a 3-tool-production cycle1: Pre-cutter mn=1.0368, n
21、=25 (green)2: Protuberance-Cutter mn=1.0, n = 20.0 (brown)3: Final rectifying process (blue)Some additional features of the tooth form calcula-tion are:- Tool service life: For the improvement of the toolservice life (no. of gears cut until the tool has tobe re-sharpened or replaced) the display of
22、thespecific sliding on the tool cutting flank is veryimportant (fig. 2). There are many factors in-fluencing the tool service life. One of them is thelocal specific sliding on the tool. A high negativespecific sliding on the tool implies that a shortsection on the cutting edge of the tool producesa
23、large section on the gear. This means that thispart of the tool is highly utilized and consequent-ly subject to high wear. As shown in fig.2, a pre-cutting-tool with higher pressure angle (as infig.1) has a significantly reduced specificsliding.- Grinding notch: For the root strength it is import-an
24、t to know if through the grinding process a socalled “grinding notch” (ISO6336-3, factor Ysg)results. Therefore during the calculation of thegrinding process, the notch has to be recog-nized. Such a notch can reduce considerablythe safety factor for bending stress. In KISS-soft, the corresponding da
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- AGMA05FTM042005TOOTHMESHINGSTIFFNESSOPTIMISATIONBASEDONGEARTOOTHFORMDETERMINATIONFORAPRODUCTIONPROCESSUSINGDIFFERENTTOOLS

链接地址:http://www.mydoc123.com/p-422005.html