第十三节 常系数线性微分方程组解法举例.ppt
《第十三节 常系数线性微分方程组解法举例.ppt》由会员分享,可在线阅读,更多相关《第十三节 常系数线性微分方程组解法举例.ppt(11页珍藏版)》请在麦多课文档分享上搜索。
第十三节 常系数线性微分方程组解法举例,一、微分方程组 二、常系数线性微分方程组的解法 三、小结,一、微分方程组,微分方程组 由几个微分方程联立而成的方程组称为微分方程组,注意:这几个微分方程联立起来共同确定了几个具有同一自变量的函数,常系数线性微分方程组 微分方程组中的每一个微分方程都是常系数线性微分方程叫做常系数线性微分方程组,步骤:, 从方程组中消去一些未知函数及其各阶导数,得到只含有一个未知函数的高阶常系数线性微分方程,二、常系数线性微分方程组的解法,解此高阶微分方程,求出满足该方程的未知函数.,把已求得的函数带入原方程组,一般说来,不必经过积分就可求出其余的未知函数,例1 解微分方程组,由(2)式得,设法消去未知函数 ,,解,两边求导得,,把(3), (4)代入(1)式并化简, 得,解之得通解,再把(5)代入(3)式, 得,原方程组的通解为,例如,,注意:,例2 解微分方程组,解,类似解代数方程组消去一个未知数,消去,(),(),(),即,非齐线性方程,其特征方程为,解得特征根为,易求一个特解,于是通解为,(),将()代入()得,方程组通解为,注意:在求得一个未知函数的通解以后,再求另一个未知函数的通解时,一般不再积分,三、小结,注意求出其中一个解,再求另一个解时,宜用代数法,不要用积分法避免处理两次积分后出现的任意常数间的关系,注意微分算子D的使用;,
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第十 三节 系数 线性 微分 方程组 解法 举例 PPT
