全等三角形专题:构造全等三角形方法总结.doc
《全等三角形专题:构造全等三角形方法总结.doc》由会员分享,可在线阅读,更多相关《全等三角形专题:构造全等三角形方法总结.doc(5页珍藏版)》请在麦多课文档分享上搜索。
1、 戴氏教育集团 努力 +勤奋 +信心 =成功 1 专题:构造全等 三角形 利用三角形的中线来构造全等三角形( 倍长中线法 ) 倍长中线法:即把中线延长一倍,来构造全等三角形。 1、 如图 1,在 ABC 中, AD 是中线, BE 交 AD 于点 F,且 AE EF 试说明线段 AC 与 BF 相等的理由 简析 由于 AD 是中线,于是可延长 AD 到 G,使 DG AD,连结 BG,则 在 ACD 和 GBD 中, AD GD, ADC GDB, CD BD,所以 ACD GBD( SAS), 所以 AC GB, CAD G,而 AE EF,所以 CAD AFE, 又 AFE BFG,所以
2、BFG G,所以 BF BG,所以 AC BF 说明 要说明线段或角相等,通常的思路是说明它们所在的两个 三角形全等,而遇到中线时又通常通 过延长中线来构造全等三角形 利用三角形的角平分线来构造全等三角形 法一:如图,在 ABC 中, AD 平分 BAC。在 AB 上截取 AE=AC,连结 DE。 ( 可以利用角平分线所在直线作对称轴,翻折三角形来构造全等三角形。) 法二:如图,在 ABC 中, AD 平分 BAC。延长 AC 到 F,使 AF=AB,连结 DF。 (可以利用角平分线所在直线作对称轴,翻折三角形来构造全等三角形。 ) 法三: 在 ABC 中, AD 平分 BAC。作 DM AB
3、 于 M, DN AC 于 N。 (可以利用角平分线所在直线作 对称轴,翻折三角形来构造全等三角形 ) 图 1 G C F B A E D 戴氏教育集团 努力 +勤奋 +信心 =成功 2 (还可以用“角平分线上的点到角的两边距离相等”来证 DM=DN) 2、 已知:如 图,在四边形 ABCD 中, BD 是 ABC 的角平分线, AD=CD,求证:A+ C=180 法一:证明:在 BC 上截取 BE,使 BE=AB,连结 DE。 法二:延长 BA 到 F,使 BF=BC,连结 DF。 BD 是 ABC 的角平分线(已知) BD 是 ABC 的角平分线(已知) 1= 2(角平分线定义) 1= 2
4、(角平分线定义) 在 ABD 和 EBD 中 在 BFD 和 BCD 中 AB=EB(已知) BF=BC(已知) 1= 2(已证) 1= 2(已证) BD=BD(公共边) BD=BD(公共边) ABD EBD( S.A.S) BFD BCD( S.A.S) A 3(全等三角形的对应角相等) F C(全等三角形的对应角相等 AD=DE(全等三角形的对应边相等) DF=DC(全等三角形的对应边相等) AD=CD(已知), AD=DE(已证) AD=CD(已知) , DF=DC(已证) DE=DC(等量代换) DF=AD(等量代换) 4= C(等边对等角) 4= F(等边对等角) 3+ 4 180
5、(平角定义), F C(已证) A 3(已证) 4= C(等量代换) A+ C 180(等量代换) 3+ 4 180(平角定义) A+ C 180(等量代换) 法三: 作 DM BC 于 M, DN BA 交 BA 的延长线于 N。 BD 是 ABC 的角平分线(已知) 1= 2(角平分线定义) DN BA, DM BC(已知) N= DMB=90(垂直的定义) 在 NBD 和 MBD 中 N= DMB (已证) 1= 2(已证) BD=BD(公共边) NBD MBD( A.A.S) ND=MD(全等三角形的对应边相等) DN BA, DM BC(已知) NAD 和 MCD 是 Rt 在 Rt
6、NAD 和 RtMCD 中 ND=MD (已证) AD=CD(已知) RtNAD RtMCD( H.L) 4= C(全等三角形的对应角相等) 3+ 4 180(平角定义), 戴氏教育集团 努力 +勤奋 +信心 =成功 3 A 3(已证) A+ C 180(等量代换) 法四: 作 DM BC 于 M, DN BA 交 BA 的延长线于 N。 BD 是 ABC 的角平分线(已知) DN BA, DM BC(已知) ND=MD(角平分线上的点到这 个角的两边距离相等) DN BA, DM BC(已知) NAD 和 MCD 是 Rt 在 RtNAD 和 RtMCD 中 ND=MD (已证) AD=CD
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全等 三角形 专题 构造 方法 总结 DOC
