第2章 光纤.ppt
《第2章 光纤.ppt》由会员分享,可在线阅读,更多相关《第2章 光纤.ppt(77页珍藏版)》请在麦多课文档分享上搜索。
1、第2章 光纤,光纤结构 光纤传输原理单模光纤 多模光纤 光纤使用特性和产品介绍,光纤是光纤通信系统的传输介质,它具有传输损耗低、传输容量大的特点。对于光纤而言,其衰减和色散特性是影响系统性能的主要因素。当入射到光纤内的光功率较大时,光纤呈现的非线性效应对系统的传输会产生较大的影响。 随着技术的发展,光纤的性能也不断地得到改善,新的光纤品种不断出现,其价格也逐年下降,应用范围得到了进一步的扩展。为了对光纤通信系统有一个全面的了解,必须认识光纤的工作原理及其性能,以便根据实际使用环境选择光纤产品,保证光纤性能稳定、系统可靠地运行。 本章用几何光学和波动方程两种方法阐述了光纤中光的传输机理,在此基础
2、上,对单模光纤和多模光纤传输特性进行了分析,并介绍了光纤制作工艺、光纤产品及其光纤的使用特性。,2.1 光纤结构 按照光纤横截面上径向折射率的分布特点,我们把光纤分为阶跃折射率光纤和渐变折射率光纤两大类。 2.1.1 阶跃折射率光纤 阶跃折射率光纤的折射率分布如图2.1.1所示。图(a)、(b)分别为单模和多模阶跃折射率光纤示意图。 图2.1.1 阶跃折射率光纤示意图 图中,2a为纤芯直径,2b为包层直径,纤芯和包层的折射率都是常数,分别为n1和n2。为了满足光在纤芯内的全内反射条件,要求。在纤芯和包层分界面处,折射率呈阶跃式变化,用数学形式表示为 (2.1.1) 多模阶跃光纤由于存在着较大的
3、模间色散,使用受到了很大限制。,2.1.2 渐变折射率光纤 渐变折射率光纤纤芯中折射率不是常数,而是在纤芯中心最大,为n1,沿径向(r方向)按一定的规律逐渐减小至n2,包层中折射率不变仍为 n2。其折射率分布是: (2.1.2) 式中,r是光纤的径向半径,参数决定折射率形式。为相对折射率差。值越大,把能量束缚在纤芯中传输的能力越强,对渐变多模光纤而言,其典型值为0.015。 图2.1.2示出了多模渐变折射率光纤中折射率分布和光线传输示意图,与阶跃型光纤不同的是,光线传播的路径是连续的弯曲线。 表2.1列出了阶跃型单模光纤、阶跃型多模光纤和渐变型多模光纤的典型参数。,2.2 光纤传输原理 由物理
4、学可知,光具有粒子性和波动性,对其分析也有两种方法:一是几何光学分析法,二是波动方程分析法。 2.2.1 几何光学分析法 几何光学分析法是用射线光学理论分析光纤中光传输特性的方法。这种分析方法的前提条件是光的波长要远小于光纤尺寸,用这种方法可以得到一些基本概念:全内反射、数值孔径等,其特点是直观、简单。 1. 全内反射 光在不同介质中的传播速度不同,描述介质对光这种作用的参数就是折射率,折射率与光之间的关系为 (2.2.1) 式中,c是光在真空中的传播速度,c3108m/s,是光在介质中的传播速度,n是介质的折射率。空气的折射率近似为1。折射率越高,介质材料密度越大,光在其中传播的速度越慢。
5、在均匀介质中,光是直线传播的,当光由一种折射率介质向另一种折射率介质传播时,在介质分界面上会产生反射和折射现象,见图2.2.1。,图2.2.1 光由光密介质向光疏介质的入射,由斯涅尔定理可知,入射光、反射光以及折射光与界面垂线间的角度满足下列关系 (2.2.2) 式中,1、2和3分别称为入射角、折射角和反射角。我们将折射率较大的介质称为光密介质,折射率较小的称为光疏介质,由(2.2.2)式可知,当光由光疏介质进入光密介质时,折射角小于入射角;反之,光由光密介质进入光疏介质时,折射角大于入射角。在这种情况下(n1n2),随着入射角的增大,折射角也增大,当 时,折射光将沿着分界面传播,此时对应的入
6、射角称为临界入射角,记为 。 图2.2.1 光由光密介质向光疏介质的入射 由(2.2.2)式可求得临界入射角: ,即 (2.2.3),如果入射光的入射角,所有的光将被反射回入射介质,这种现象称之为全反射,光纤就是利用这种折射率安排来传导光的:光纤纤芯的折射率高于包层折射率,在纤芯与包层的分界面上,光发生全内反射,沿着光纤轴线曲折前进,如图2.2.2所示。我们将光纤内的光线分成两类:一类是子午光线,见图2.2.2(a)。另一类是斜光线,见图2.2.2(b)。子午光线是在与光纤轴线构成的平面(子午面)内传输,斜光线则在传播的过程中不固定在一个平面内。,图2.2.2 子午光线和斜光线,2. 数值孔径
7、 数值孔径是光纤一个非常重要的参数,它体现了光纤与光源之间的耦合效率。图2.2.3示出了光源发出的光进入光纤的情况。,图2.2.3 光源出射光与光纤的耦合,光源与光纤端面之间存在着空气缝隙,入射到光纤端面上的光,一部分是不能进入光纤的,而能进入光纤端面内的光也不一定能在光纤中传输,只有符合特定条件的光才能在光纤中发生全内反射而传播到远方。由图2.2.3可知,只有从空气缝隙到光纤端面光的入射角小于o,入射到光纤里的光线才能传播。实际上o是个空间角,也就是说如果光从一个限制在2o的锥形区域中入射到光纤端面上,则光可被光纤捕捉。 设空气的折射率为no,在空气与光纤端面上运用斯涅尔定律,有 (2.2.
8、4) 式中C与临界入射角C之间的关系为 (2.2.5) 由(2.2.4)式和(2.2.5)式可得 对空气,有n01,故有 (2.2.6) 显然,0越大,即纤芯与包层的折射率之差越大,光纤捕捉光线的能力越强,而参数直接反映了这种能力,我们称为光纤的数值孔径NA(Numerical Aperture) (2.2.7) 称0为最大接收角,c为临界传播角。,例2.2.1 n11.48、n21.46的阶跃光纤的数值孔径是多少?最大接收角是多少? 解: 数值孔径还可以表示成 (2.2.8),相对折射率差大一些,光纤与光源之间的耦合效率就高一些,但是过大,色散影响就会严重,实际光纤总有1。 对于渐变折射率光
9、纤,数值孔径有着类似的定义,n1和n2分别为处(轴线)和处(包层)的折射率。 用几何光学分析法也可以解释渐变折射率光纤中光线的传播方式。渐变折射率光纤的纤芯折射率不是常数,在中心轴线处最高,然后沿径向逐渐减小。我们可以将光纤纤芯分成若干个同心圆柱层,每层的折射率看作常数,为简单起见,在图2.2.4中只画出了三层同心圆柱,它们的折射率满足: 。显然,光线由第一层向第二层入射时,也即由光密介质向光疏介质入射时,有 ,同理 。与阶跃型光纤不同的是,光在每层传输后,方向都要发生变化,这样就不难解释为什么渐变折射率光纤中光线会向轴线方向发生弯曲现象,而且越靠近轴线弯曲程度就越高,渐变折射率光纤对光的这种
10、作用也称为自聚焦。,图2.2.4 渐变折射率光纤中光线的传播方式,3. 传播时延和时延差 光线在纤芯中的传输速度。对于子午光线而言,它在纤芯中按锯齿状路径传播,设Lp为光线路径在包层和纤芯界面交点P、Q间的距离,如图2.2.5所示,为光线与z轴的夹角,则光线在z方向行进的距离为 需要时间,图2.2.5 子午光线在光纤中的传播,定义沿z轴方向传播单位距离的时间为光线的传播时延,用表示,则有 (2.2.9) 可见,光线的传播时延在纤芯折射率n1一定时,仅与光线与z轴的夹角有关,如果在纤芯中有两条束缚光线,与z轴的夹角分别为1和2,显然,它们沿z轴方向传输单位距离时,在纤芯中走过的路径是不一样的,因
11、而传播时延也不相同,用表示两条路径光线传播的时延差,有 (2.2.10) 在所有可能存在的子午光线中,路径最短的一条光线是沿z轴方向直线传播的光线,其0。路径最长的一条光线则是沿全内反射临界角行进的光线,其arccos-1(n1/n2),它们的时延差为最大值 (2.2.11) 上式常用来估算阶跃光纤中多径传输所导致的光脉冲展宽。对于渐变折射率光纤,光折射率分布为抛物线时,最大时延差的计算公式为 (2.2.12),4. 通信容量 光纤通信系统的通信容量用比特率距离积来表示,它是系统的一个极限参数。某个系统设计完成以后,通信容量则是一个定值。其意义是:数据速率和传输距离可以变化,但必须满足两者的乘
12、积为常数。设系统的比特率为B,距离为L,我们可以通过这样的方法来估算比特率距离积:光脉冲传输距离L后的展宽不超过系统比特周期的四分之一 由上式可得通信容量 (2.2.13) 对于抛物线型渐变折射率光纤,通信容量为 (2.2.14) 因为是远小于1的数,比较(2.2.13)式和(2.2.14)式可以发现,渐变折射率光纤大大降低了模式色散,提高了通信容量。,2.2.2 波动方程分析法 当光纤的尺寸与光的波长相当时,用几何光学分析法分析光纤中光的特性便受到了限制,这时须用波动方程分析法。波动方程法是基于电磁场理论,在麦克斯韦方程的基础上,运用光纤纤芯与包层分界面的边界条件,从而导出光纤中光场的分布形
13、式,得到光在光纤中的传播特性。 1. 光波基本理论 在这里,我们要学习一些光波的基本概念和基本理论。我们已经知道,光波是电磁波,它的电场和磁场随着时间不断地变化,其形式是多样的,最简单的形式是正弦波,下式是一个沿着z方向传播的行波表达式 (2.2.15) 式中,E0是振幅,是光波的角频率, k是传播常数或波数,k=2/,为介质中光波的波长,0是初始相位常数。记0为光在真空中的波长,k0为光在真空中的波数,那么有 (2.2.16) 电场是个有方向的量,(2.2.15)式表示电场的指向是在x方向上,大小是在x方向上随着时间t和传输距离z变化,如果将电场写成一般表达式,设它沿r方向传播,则有 (2.
14、2.17) 在直角坐标系中,kx、ky和kz称为传播常数在直角坐标系中的分量。,实际上,随时间变化的电场会产生同频率的磁场,反之,磁场也会产生电场。所以电场和磁场总是同时存在,它们频率相同,方向相互垂直,如图2.2.6所示。从图中可以看出Ex场量总是在x方向,Hy场量总在y方向,两者矢量乘的方向是z方向,即光波能量的传播方向。电磁波功率流密度的表达式是 (2.2.18) 电场与磁场在数量上满足关系 (2.2.19) 式中称为波阻抗,量纲为欧姆,、分别是介质的磁导率和介电常数,在真空中,04107特斯拉米/安培,08.851012库仑/牛顿米2。一般介质中,0,r0n20,r为相对介电常数,n为
15、折射率。 (2.2.15)式所描述的电磁波称为平面波,平面波的定义是指在与波传播方向垂直的无限大平面内,电场、磁场的方向和振幅以及相位都保持不变的波。为方便起见,常用指数形式表示平面波 (2.2.20) 式中, 显然(2.2.15)式为(2.2.20)式的实数部分。,下面讨论几个基本概念 (1)相速度、群速度 相速度是电磁波等相位点的传播速度。在(2.2.15)式中,记相位 (2.2.21) 如果将观察点固定于波形的某个点,可以看到此点以匀速向+z方向传播,因为该点对应的相位为常数,我们就将波传播的速度称为相速。根据常数 可求得 (2.2.22) 可见,相速度与介质的折射率有关。在光密介质中,
16、光传输得慢些。在各向同性介质中,折射率n为一常数,不随介质方向而改变。在各向异性介质中,n随介质方向的不同而改变,例如,沿x方向上的折射率与沿y方向上的折射率不同,nxny,造成电磁波在两个方向上传播的速度不一样,许多光器件的工作就基于该机理。 光源发出的光波并不是单一频率的电磁波,其光谱具有一定的宽度,从形式上看是一光包络,该包络向前传播的速度称为群速度,它的表达式是 (2.2.23) 群速度也是能量以及信息传输的速度。由(2.2.22)式得, 对于色散介质 ,代入(2.2.23)式中,得 (2.2.24) 式中 称为群折射率。,(2)偏振 偏振是电磁理论的一个重要概念,它反映了在空间给定点
17、上电场强度矢量的取向随时间变化的特性。我们用电场强度矢量端点在空间描绘出的轨迹来表示,如果该轨迹是直线,称电磁波为线极化;如果轨迹是圆,则称为圆极化;如果轨迹是椭圆,则称为椭圆极化。 在前面的分析中,我们把电场固定在x方向,磁场固定在y方向,其实这只是一个特例。在一般情况下,沿z方向传播的均匀平面波,Ex、Ey两个分量都存在,这两个分量的振幅和相位不一定相同,将它们分别表示为 (2.2.25) 为分析方便起见,在上式中设Ex分量的初相为零。我们分三种情况讨论。 线偏振 为分析简单起见,取z=0(xoy平面)。线偏振的条件是:Ex、Ey相位相同或相反,即00或01800,此时合成电场 (2.2.
18、26) 合成电场与x轴的夹角 (2.2.27) 虽然合成电场的大小随时间变化,但其矢量端轨迹始终与x轴保持恒定的夹角,见图2.2.7(a)。,圆偏振 圆偏振的条件是Ex与Ey振幅相等,相位差为900。由(2.2.25)式得 此时的合成电场 (2.2.28) 合成电场与x轴的夹角 (2.2.29) 即合成电场的幅度为常数,而与x轴的夹角随时间改变,见图2.2.7(b)。,图2.2.8 光的几种偏振方式,椭圆偏振 椭圆偏振发生在Ex与Ey振幅和相位都不相等的情况下,此时有 (2.2.30) (2.2.30)式为一椭圆方程,合成矢量的矢量端在一椭圆上旋转,见图2.2.7(c)。 例2.2.1 试将线
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 光纤 PPT
