2018年高中数学第2章圆锥曲线与方程2.1圆锥曲线课件12苏教版选修2_1.ppt
《2018年高中数学第2章圆锥曲线与方程2.1圆锥曲线课件12苏教版选修2_1.ppt》由会员分享,可在线阅读,更多相关《2018年高中数学第2章圆锥曲线与方程2.1圆锥曲线课件12苏教版选修2_1.ppt(92页珍藏版)》请在麦多课文档分享上搜索。
1、圆锥曲线,题型一 直线与圆锥曲线的位置关系,解析答案,题型一 直线与圆锥曲线的位置关系,所以直线l与双曲线C有两个交点, 由一元二次方程根与系数的关系得两个交点横坐标符号不同, 故两个交点分别在左、右支上. 答案 ,解析 关于t的方程t2cos tsin 0的两个不等实根为0,tan (tan 0), 则过A,B两点的直线方程为yxtan ,,所以直线yxtan 与双曲线没有公共点.,0,解析答案,解析答案,设直线l同时与椭圆C1和抛物线C2:y24x相切,求直线l的方程.,解析答案,思维升华,由题意可知此方程有唯一解,,解析答案,思维升华,解析答案,思维升华,思维升华,思维升华,研究直线和圆
2、锥曲线的位置关系,一般转化为研究直线方程与圆锥曲线方程组成的方程组解的个数.对于填空题,常充分利用几何条件,利用数形结合的方法求解.,跟踪训练1,解析答案,方程根的判别式(8m)249(2m24)8m2144.,解 将直线l的方程与椭圆C的方程联立,,将代入,整理得9x28mx2m240. ,(2)有且只有一个公共点;,解析答案,(3)没有公共点.,解析答案,返回,题型二 弦长问题,解析答案,题型二 弦长问题,解析答案,思维升华,设点M,N的坐标分别为(x1,y1),(x2,y2), 则y1k(x11),y2k(x21),,解析答案,思维升华,思维升华,思维升华,有关圆锥曲线弦长问题的求解方法
3、: 涉及弦长的问题中, 应熟练的利用根与系数的关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数的关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.,跟踪训练2,解析答案,联立,得a29,b28.,(2)若ACBD,求直线l的斜率.,解析答案,返回,解 如图,设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4).,从而x3x1x4x2,即x1x2x3x4,,于是(x1x2)24x1x2(x3x4)24x3x4. 设直线l的斜率为k,则l的方程为ykx1.,解析答案,而x1,x2是这个方程的两根, 所以x1x24k,x1x24. ,而x3,x
4、4是这个方程的两根,,解析答案,返回,题型三 中点弦问题,解析答案,题型三 中点弦问题,解析答案,即a22b2,又a2b2c2,,解析答案,思维升华,解析 设M(x1,y1),N(x2,y2),MN的中点P(x0,y0),,解析答案,思维升华,M,N关于直线yxm对称,kMN1, y03x0.,解得m0或8,经检验都符合.,答案 0或8,思维升华,思维升华,设抛物线过定点A(1,0),且以直线x1为准线. (1)求抛物线顶点的轨迹C的方程; 解 设抛物线顶点为P(x,y),则焦点F(2x1,y). 再根据抛物线的定义得AF2,即(2x)2y24,,跟踪训练3,解析答案,解析答案,返回,两式相减
5、,得4(xMxN)(xMxN)(yMyN)(yMyN)0,,解析答案,解析答案,返回,思想方法 感悟提高,1.有关弦的三个问题 涉及弦长的问题,应熟练地利用根与系数的关系,设而不求计算弦长;涉及垂直关系往往也是利用根与系数的关系设而不求简化运算;涉及过焦点的弦的问题,可考虑利用圆锥曲线的定义求解. 2.求解与弦有关问题的两种方法 (1)方程组法:联立直线方程和圆锥曲线方程,消元(x或y)成为二次方程之后,结合根与系数的关系,建立等式关系或不等式关系.,方法与技巧,(2)点差法:在求解圆锥曲线且题目中已有直线与圆锥曲线相交和被截线段的中点坐标时,设出直线和圆锥曲线的两个交点坐标,代入圆锥曲线的方
6、程并作差,从而求出直线的斜率,然后利用中点求出直线方程.“点差法”的常见题型有:求中点弦方程、求(过定点、平行弦)弦中点轨迹、垂直平分线问题.必须提醒的是“点差法”具有不等价性,即要考虑判别式是否为正数.,判断直线与圆锥曲线位置关系时的注意点 (1)直线与双曲线交于一点时,易误认为直线与双曲线相切,事实上不一定相切,当直线与双曲线的渐近线平行时,直线与双曲线相交于一点. (2)直线与抛物线交于一点时,除直线与抛物线相切外,易忽视直线与对称轴平行时也相交于一点.,失误与防范,返回,练出高分,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,2,解析答案,1,2,3,4,5,
7、6,7,8,9,10,11,12,13,14,15,所以它与双曲线只有1个交点.,1,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析 设A,B两点的坐标分别为(x1,y1),(x2,y2), 直线l的方程为yxt,,得5x28tx4(t21)0,,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,1,2,3,4,5,6,7,8,9,10,11,12,13,14,
8、15,5.过抛物线y24x的焦点作一条直线与抛物线相交于A,B两点,它们到直线x2的距离之和等于5,则这样的直线有_条.,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,解析 抛物线y24x的焦点坐标为(1,0),准线方程为x1, 设A,B的坐标分别为(x1,y1),(x2,y2), 则A,B到直线x1的距离之和为x1x22. 设直线方程为xmy1,代入抛物线y24x, 则y24(my1),即y24my40, x1x2m(y1y2)24m22.,解析答案,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,x1x224m244. A,B到直
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 年高 数学 圆锥曲线 方程 21 课件 12 苏教版 选修 _1PPT
