2019高考数学一轮复习第八章立体几何8.6空间向量在立体几何中的应用练习理.doc
《2019高考数学一轮复习第八章立体几何8.6空间向量在立体几何中的应用练习理.doc》由会员分享,可在线阅读,更多相关《2019高考数学一轮复习第八章立体几何8.6空间向量在立体几何中的应用练习理.doc(32页珍藏版)》请在麦多课文档分享上搜索。
1、18.6 空间向量在立体几何中的应用考纲解读考点 内容解读 要求 高考示例 常考题型 预测热度空间向量及其应用理解直线的方向向量与平面的法向量;能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系;能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理);能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用掌握2017浙江,9;2017课标全国,19;2017天津,17;2017江苏,22;2017北京,16;2017浙江,19;2017山东,17;2016课标全国,19;2016山东,17;2016浙江,17;20
2、15课标,19;2014陕西,17;2013课标全国,18解答题 分析解读 1.能运用共线向量、共面向量、空间向量基本定理及有关结论证明点共线、点共面、线共面及线线、线面的平行与垂直问题;会求线线角、线面角;会求点点距、点面距等距离问题,从而培养用向量法思考问题和解决问题的能力.2.会利用空间向量的坐标运算、两点间距离公式、夹角公式以及相关结论解决有关平行、垂直、长度、角、距离等问题,从而培养准确无误的运算能力.3.本节内容在高考中延续解答题的形式,以多面体为载体,求空间角的命题趋势较强,分值约为12分,属中档题.五年高考考点 空间向量及其应用1.(2017江苏,22,10分)如图,在平行六面
3、体ABCD-A 1B1C1D1中,AA 1平面ABCD,且AB=AD=2,AA 1=,BAD=120.(1)求异面直线A 1B与AC 1所成角的余弦值;(2)求二面角B-A 1D-A的正弦值.解析 在平面ABCD内,过点A作AEAD,交BC于点E.因为AA 1平面ABCD,所以AA 1AE,AA 1AD.如图,以,为正交基底建立空间直角坐标系A-xyz.因为AB=AD=2,AA 1=,BAD=120,则A(0,0,0),B(,-1,0),D(0,2,0),E(,0,0),A 1(0,0,),C1(,1,).(1)=(,-1,-),=(,1,),则cos=-,2因此异面直线A 1B与AC 1所成
4、角的余弦值为.(2)平面A 1DA的一个法向量为=(,0,0).设m=(x,y,z)为平面BA 1D的法向量,又=(,-1,-),=(-,3,0),则即不妨取x=3,则y=,z=2,所以m=(3,2)为平面BA 1D的一个法向量,从而cos=.设二面角B-A 1D-A的大小为,则|cos |=.因为0,所以sin =.因此二面角B-A 1D-A的正弦值为.2.(2017北京,16,14分)如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD平面ABCD,点M在线段PB上,PD平面MAC,PA=PD=,AB=4.(1)求证:M为PB的中点;(2)求二面角B-PD-A的大小;(3)求直线
5、MC与平面BDP所成角的正弦值.解析 (1)设AC,BD交点为E,连接ME.因为PD平面MAC,平面MAC平面PDB=ME,所以PDME.因为ABCD是正方形,所以E为BD的中点.所以M为PB的中点.(2)取AD的中点O,连接OP,OE.因为PA=PD,所以OPAD.又因为平面PAD平面ABCD,且OP平面PAD,所以OP平面ABCD.因为OE平面ABCD,所以OPOE.因为ABCD是正方形,所以OEAD.如图建立空间直角坐标系O-xyz,则P(0,0,),D(2,0,0),B(-2,4,0),=(4,-4,0),=(2,0,-).设平面BDP的法向量为n=(x,y,z),则即令x=1,则y=
6、1,z=.于是n=(1,1,).平面PAD的一个法向量为p=(0,1,0).3所以cos=.由题意知二面角B-PD-A为锐角,所以它的大小为.(3)由题意知M,C(2,4,0),=.设直线MC与平面BDP所成角为,则sin =|cos|=.所以直线MC与平面BDP所成角的正弦值为.3.(2017课标全国,19,12分)如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,BAD=ABC=90,E是PD的中点.(1)证明:直线CE平面PAB;(2)点M在棱PC上,且直线BM与底面ABCD所成角为45,求二面角M-AB-D的余弦值.解析 (1)取PA的中点F,连
7、接EF,BF.因为E是PD的中点,所以EFAD,EF=AD.由BAD=ABC=90得BCAD,又BC=AD,所以EFBC, 四边形BCEF是平行四边形,CEBF,又BF平面PAB,CE平面PAB,故CE平面PAB.(2)由已知得BAAD,以A为坐标原点,的方向为x轴正方向,|为单位长,建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),B(1,0,0),C(1,1,0),P(0,1,),=(1,0,-),=(1,0,0).设M(x,y,z)(0|=sin 45,=,即(x-1) 2+y2-z2=0.又M在棱PC上,设=,则x=,y=1,z=-.由,解得(舍去),或所以M,从而=.设m=
8、(x 0,y0,z0)是平面ABM的法向量,则即所以可取m=(0,-,2).于是cos=.易知所求二面角为锐角.因此二面角M-AB-D的余弦值为.44.(2016课标全国,19,12分)如图,四棱锥P-ABCD中,PA底面ABCD,ADBC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明MN平面PAB;(2)求直线AN与平面PMN所成角的正弦值.解析 (1)由已知得AM=AD=2.取BP的中点T,连接AT,TN,由N为PC中点知TNBC,TN=BC=2.(3分)又ADBC,故TNAM, 故四边形AMNT为平行四边形,于是MNAT.因为AT平面
9、PAB,MN平面PAB,所以MN平面PAB.(6分)(2)取BC的中点E,连接AE.由AB=AC得AEBC,从而AEAD,且AE=.以A为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系A-xyz.由题意知,P(0,0,4),M(0,2,0),C(,2,0),N,=(0,2,-4),=,=.设n=(x,y,z)为平面PMN的法向量,则即(10分)可取n=(0,2,1).于是|cos|=.即直线AN与平面PMN所成角的正弦值为.(12分)教师用书专用(525)5.(2017浙江,9,5分)如图,已知正四面体D-ABC(所有棱长均相等的三棱锥),P,Q,R分别为AB,BC,CA上的点,A
10、P=PB,=2.分别记二面角D-PR-Q,D-PQ-R,D-QR-P的平面角为,则( )A.=.易知所求角为锐二面角,6因此所求的角为60.9.(2015课标,19,12分)如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA 1=8,点E,F分别在A 1B1,D1C1上,A 1E=D1F=4.过点E,F的平面与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面所成角的正弦值.解析 (1)交线围成的正方形EHGF如图:(2)作EMAB,垂足为M,则AM=A 1E=4,EM=AA1=8.因为EHGF为正方形,所以EH=
11、EF=BC=10.于是MH=6,所以AH=10.以D为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系D-xyz,则A(10,0,0),H(10,10,0),E(10,4,8),F(0,4,8),=(10,0,0),=(0,-6,8).设n=(x,y,z)是平面EHGF的法向量,则即所以可取n=(0,4,3).又=(-10,4,8),故|cos|=.所以AF与平面EHGF所成角的正弦值为.10.(2016山东,17,12分)在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O的直径,FB是圆台的一条母线.(1)已知G,H分别为EC,FB的中点.求证:GH平面ABC;(2)已知
12、EF=FB=AC=2,AB=BC.求二面角F-BC-A的余弦值.解析 (1)证明:设FC中点为I,连接GI,HI.在CEF中,因为点G是CE的中点,所以GIEF.又EFOB,所以GIOB.在CFB中,因为H是FB的中点,所以HIBC.又HIGI=I,所以平面GHI平面ABC.因为GH平面GHI,所以GH平面ABC.7(2)解法一:连接OO,则OO平面ABC.又AB=BC,且AC是圆O的直径,所以BOAC.以O为坐标原点,建立如图所示的空间直角坐标系O-xyz.由题意得B(0,2,0),C(-2,0,0),所以=(-2,-2,0),过点F作FM垂直OB于点M.所以FM=3,可得F(0,3).故=
13、(0,-,3).设m=(x,y,z)是平面BCF的法向量.由可得可得平面BCF的一个法向量m=.因为平面ABC的一个法向量n=(0,0,1),所以cos=.所以二面角F-BC-A的余弦值为.解法二:连接OO.过点F作FM垂直OB于点M.则有FMOO.又OO平面ABC,所以FM平面ABC.可得FM=3.过点M作MN垂直BC于点N,连接FN.可得FNBC,从而FNM为二面角F-BC-A的平面角.又AB=BC,AC是圆O的直径,所以MN=BMsin 45=.从而FN=,可得cosFNM=.所以二面角F-BC-A的余弦值为.11.(2016浙江,17,15分)如图,在三棱台ABC-DEF中,平面BCF
14、E平面ABC,ACB=90,BE=EF=FC=1,BC=2,AC=3.(1)求证:BF平面ACFD;(2)求二面角B-AD-F的平面角的余弦值.解析 (1)延长AD,BE,CF相交于一点K,如图所示.8因为平面BCFE平面ABC,且ACBC,所以,AC平面BCK,因此,BFAC.又因为EFBC,BE=EF=FC=1,BC=2,所以BCK为等边三角形,且F为CK的中点,则BFCK.所以BF平面ACFD.(2)解法一:过点F作FQAK于Q,连接BQ.因为BF平面ACK,所以BFAK,则AK平面BQF,所以BQAK.所以,BQF是二面角B-AD-F的平面角.在RtACK中,AC=3,CK=2,得FQ
15、=.在RtBQF中,FQ=,BF=,得cosBQF=.所以,二面角B-AD-F的平面角的余弦值为.解法二:如图,延长AD,BE,CF相交于一点K,则BCK为等边三角形.取BC的中点O,则KOBC,又平面BCFE平面ABC,所以,KO平面ABC.以点O为原点,分别以射线OB,OK的方向为x,z的正方向,建立空间直角坐标系O-xyz.由题意得B(1,0,0),C(-1,0,0),K(0,0,),A(-1,-3,0),E,F.因此,=(0,3,0),=(1,3,),=(2,3,0).设平面ACK的法向量为m=(x 1,y1,z1),平面ABK的法向量为n=(x 2,y2,z2).由得取m=(,0,-
16、1);由得取n=(3,-2,).于是,cos=.所以,二面角B-AD-F的平面角的余弦值为.12.(2015陕西,18,12分)如图1,在直角梯形ABCD中,ADBC,BAD=,AB=BC=1,AD=2,E是AD的中点,O是AC与BE的交点.将ABE沿BE折起到A 1BE的位置,如图2.(1)证明:CD平面A 1OC;(2)若平面A 1BE平面BCDE,求平面A 1BC与平面A 1CD夹角的余弦值.解析 (1)证明:在题图1中,因为AB=BC=1,AD=2,E是AD的中点,BAD=,所以BEAC.即在题图2中,BEOA 1,BEOC,从而BE平面A 1OC,又CDBE,所以CD平面A 1OC.
17、(2)因为平面A 1BE平面BCDE,9又由(1)知,BEOA 1,BEOC,所以A 1OC为二面角A 1-BE-C的平面角,所以A 1OC=.如图,以O为原点,建立空间直角坐标系,因为A 1B=A1E=BC=ED=1,BCED,所以B,E,A 1,C,得=,=,=(-,0,0).设平面A 1BC的法向量n 1=(x1,y1,z1),平面A 1CD的法向量n 2=(x2,y2,z2),平面A 1BC与平面A 1CD夹角为,则得取n 1=(1,1,1);得取n 2=(0,1,1),从而cos =|cos|=,即平面A 1BC与平面A 1CD夹角的余弦值为.13.(2015四川,18,12分)一个
18、正方体的平面展开图及该正方体的直观图的示意图如图所示.在正方体中,设BC的中点为M,GH的中点为N.(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);(2)证明:直线MN平面BDH;(3)求二面角A-EG-M的余弦值.解析 (1)点F,G,H的位置如图所示.(2)证明:连接BD,设O为BD的中点.因为M,N分别是BC,GH的中点,所以OMCD,且OM=CD,HNCD,且HN=CD.所以OMHN,OM=HN.所以MNHO是平行四边形,从而MNOH.又MN平面BDH,OH平面BDH,所以MN平面BDH.(3)解法一:连接AC,过M作MPAC于P.在正方体ABCD-EFGH中,ACE
19、G,所以MPEG.过P作PKEG于K,连接KM,所以EG平面PKM,从而KMEG.所以PKM是二面角A-EG-M的平面角.10设AD=2,则CM=1,PK=2.在RtCMP中,PM=CMsin 45=.在RtPKM中,KM=.所以cosPKM=.即二面角A-EG-M的余弦值为.解法二:如图,以D为坐标原点,分别以,方向为x,y,z轴的正方向,建立空间直角坐标系D-xyz.设AD=2,则M(1,2,0),G(0,2,2),E(2,0,2),O(1,1,0),所以,=(2,-2,0),=(-1,0,2).设平面EGM的法向量为n 1=(x,y,z),由得取x=2,得n 1=(2,2,1).在正方体
20、ABCD-EFGH中,DO平面AEGC,则可取平面AEG的一个法向量为n 2=(1,1,0),所以cos=,故二面角A-EG-M的余弦值为.14.(2015江苏,22,10分)如图,在四棱锥P-ABCD中,已知PA平面ABCD,且四边形ABCD为直角梯形,ABC=BAD=,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.解析 以,为正交基底建立如图所示的空间直角坐标系A-xyz,则各点的坐标为B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2).(1)易知AD平面P
21、AB,所以是平面PAB的一个法向量,=(0,2,0).因为=(1,1,-2),=(0,2,-2),设平面PCD的法向量为m=(x,y,z),则m=0,m=0,即令y=1,解得z=1,x=1.所以m=(1,1,1)是平面PCD的一个法向量.从而cos=,11所以平面PAB与平面PCD所成二面角的余弦值为.(2)因为=(-1,0,2),设=(-,0,2)(01),又=(0,-1,0),则=+=(-,-1,2),又=(0,-2,2),从而cos=.设1+2=t,t1,3,则cos 2 =.当且仅当t=,即=时,|cos|的最大值为.因为y=cos x在上是减函数,所以此时直线CQ与DP所成的角取得最
22、小值.又因为BP=,所以BQ=BP=.15.(2015福建,17,13分)如图,在几何体ABCDE中,四边形ABCD是矩形,AB平面BEC,BEEC,AB=BE=EC=2,G,F分别是线段BE,DC的中点.(1)求证:GF平面ADE;(2)求平面AEF与平面BEC所成锐二面角的余弦值.解析 解法一:(1)证明:如图,取AE的中点H,连接HG,HD,又G是BE的中点,所以GHAB,且GH=AB.又F是CD的中点,所以DF=CD.由四边形ABCD是矩形得,ABCD,AB=CD,所以GHDF,且GH=DF,从而四边形HGFD是平行四边形,所以GFDH.又DH平面ADE,GF平面ADE,所以GF平面A
23、DE.(2)如图,在平面BEC内,过B点作BQEC.因为BECE,所以BQBE.12又因为AB平面BEC,所以ABBE,ABBQ.以B为原点,分别以,的方向为x轴,y轴,z轴的正方向建立空间直角坐标系,则A(0,0,2),B(0,0,0),E(2,0,0),F(2,2,1).因为AB平面BEC,所以=(0,0,2)为平面BEC的法向量.设n=(x,y,z)为平面AEF的法向量.又=(2,0,-2),=(2,2,-1),由得取z=2,得n=(2,-1,2).从而cos=,所以平面AEF与平面BEC所成锐二面角的余弦值为.解法二:(1)证明:如图,取AB中点M,连接MG,MF.又G是BE的中点,可
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 高考 数学 一轮 复习 第八 立体几何 86 空间 向量 中的 应用 练习 DOC
