2019届高考数学专题四恒成立问题精准培优专练理.doc
《2019届高考数学专题四恒成立问题精准培优专练理.doc》由会员分享,可在线阅读,更多相关《2019届高考数学专题四恒成立问题精准培优专练理.doc(15页珍藏版)》请在麦多课文档分享上搜索。
1、1培优点四 恒成立问题1参变分离法例 1:已知函数 lnafx,若 2fx在 1,上恒成立,则 a的取值范围是_【答案】 a【解析】 233lnlnlnxxax,其中 1,x,只需要 3maxa令 lngx, 21ln3gx, 1g, 2160xgx,在 1,单调递减, 0在 ,单调递减,gx, 1a2数形结合法例 2:若不等式 logsin20,1axa对于任意的 0,4x都成立,则实数 a的取值范围是_【答案】 ,14a【解析】本题选择数形结合,可先作出 sin2yx在 0,4的图像,a扮演的角色为对数的底数,决定函数的增减,根据不等关系可得 01a,观察图像进一2步可得只需 4x时, l
2、ogsin2ax,即 li14a,所以 ,14a3最值分析法例 3:已知函数 ln10fxa,在区间 1,e上, fx恒成立,求 a的取值范围_【答案】 e1a【解析】 fx恒成立即不等式 ln10ax恒成立,令 ln1gxax,只需 min0g即可, 10g, 1axx,令 xa(分析 gx的单调性)当 时 g在 ,e单调递减,则 01g(思考:为什么以 1a作为分界点讨论?因为找到 0,若要不等式成立,那么一定从1x处起 gx要增(不一定在 ,e上恒增,但起码存在一小处区间是增的) ,所以a时导致 在 1处开始单减,那么一定不符合条件由此请体会零点对参数范围所起的作用)当 1时,分 xa是
3、否在 ,e中讨论(最小值点的选取)若 ea,单调性如表所示10e1ega, ea3(1)可以比较 1g, e的大小找到最小的临界值,再求解,但比较麻烦由于最小值只会在 x, 处取得,所以让它们均大于 0 即可(2)由于 , e并不在 1,e中,所以求得的只是临界值,临界值等于零也符合条件)若 ea,则 gx在 1,e上单调递增, 10gx,符合题意,综上所述: 对点增分集训一、选择题1已知函数 2ln1,03xf,若 20fxmx,则实数 m的取值范围是( )A ,1B 2,1C 0,3D 3,【答案】B【解析】若 20fxmx,即有 2fxmx,分别作出函数 fx和直线 2ymx的图象,由直
4、线与曲线相切于原点时, 23xx,则 23,解得 1,由直线绕着原点从 x轴旋转到与曲线相切,满足条件4即有 023m,解得 21m故选 B2已知函数 4fxx,当 3,x时, 214fxm恒成立,则实数 m的取值范围是( )A 3,1B 3,1C ,1D 2,7【答案】C【解析】由题意可得: 2423fxxx,令 0fx可得: 12x, 3,且: 3f, 28f, 24037f,3f,据此可知函数 fx在区间 3,上的最小值为 3,结合恒成立的条件可得: 214m,求解关于 的不等式可得实数 的取值范围是 ,1本题选择 C 选项3若函数 2lnfxa在区间 ,2内单调递增,则实数 a的取值范
5、围是( )A ,2B ,C 1,8D 1,8【答案】D【解析】 211axfx , 20在 1,2内恒成立,所以 2max1,由于 ,2,所以 2,4, 2,8x,所以 18a,故选 D4已知对任意 21,ex不等式 2a恒成立(其中 e2.7 ,是自然对数的底数) ,则实数 a的取值范围是( )A e0,2B 0,eC ,2eD 24,e【答案】A5【解析】由 2exa得 lnx在 21,e上恒成立,即 12lnxa在 21,e上恒成立令 2lnxf, 21,e,则 21lnxfx,当 1,ex时, 0fx, f单调递增,当 2e,x时, 0fx, fx单调递减 max2eff, 12efa
6、, e02a故实数 a的取值范围是 e0,2故选 A5已知函数 xf,当 1,时,不等式 fxm恒成立,则实数 m的取值范围是( )A 1,eB ,eC e,D e,【答案】D【解析】若 mfx恒成立,则 maxf, 2eexxxf,所以 fx在 1,0单调递减,在 0,1单调递增 1f, f,所以 m故选 D6当 2,x时,不等式 324ax恒成立,则实数 a的取值范围是( )A 5,3B 96,8C 6,2D 4,3【答案】C【解析】 2,0x时,恒成立不等式等价于234xa,23min4xa,设 34f,6322 6 44443918xxxxf,2,0, f在 ,1单调递减,在 1,0单
7、调递增, min12fxf,当 x时,可知无论 a为何值,不等式均成立,当 0,1时,恒成立不等式等价于234xa,23max4xa,同理设 234xf, 491fx, f在 0,1单调递增,max16, a,综上所述: 6,2a故选 C7函数 2exf,若存在 0,2x使得 0mfx成立,则实数 m的范围是( )A 21e5,B 1,C 1,D 1e,2【答案】A【解析】若存在 0,2x使得 0mfx成立,则在 0,2x内 minfx即可,2e1fx, 22e1e1x xf,故 f在 0,上单调递减 2min 5fxf, e5m,故选 A8设函数 lnfxa,若存在 0,,使 0fx,则 a
8、的取值范围是( )A 1,eB 1,eC 1,D 1,e【答案】D【解析】 fx的定义域是 0,, 1axfx,当 0a时, f,则 f在 ,上单调递增,且 10f,故存在 0,x,使 0fx;当 a时,令 f,解得 1a,令 0fx,解得 xa,7fx在 10,a上单调递增,在 1,a上单调递减,maxln0ff,解得 e综上, 的取值范围是 1,e故选 D9若对于任意实数 0x,函数 exfa恒大于零,则实数 a的取值范围是( )A ,eB ,C e,D e,【答案】D【解析】 当 0x时, e0xfa恒成立, 若 0x, a为任意实数,efxa恒成立,若 0时, e0xfa恒成立,即当
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 高考 数学 专题 成立 问题 精准 培优专练理 DOC
