2020版高考数学新设计大一轮复习第三章导数及其表示第2节第4课时导数与函数的零点课件理新人教A版.pptx
《2020版高考数学新设计大一轮复习第三章导数及其表示第2节第4课时导数与函数的零点课件理新人教A版.pptx》由会员分享,可在线阅读,更多相关《2020版高考数学新设计大一轮复习第三章导数及其表示第2节第4课时导数与函数的零点课件理新人教A版.pptx(19页珍藏版)》请在麦多课文档分享上搜索。
1、第4课时 导数与函数的零点,考点一 判断零点的个数,【例1】 (2019合肥质检)已知二次函数f(x)的最小值为4,且关于x的不等式f(x)0的解集为x|1x3,xR.(1)求函数f(x)的解析式;,解 (1)f(x)是二次函数,且关于x的不等式f(x)0的解集为x|1x3,xR, 设f(x)a(x1)(x3)ax22ax3a,且a0. f(x)minf(1)4a4,a1. 故函数f(x)的解析式为f(x)x22x3.,令g(x)0,得x11,x23.,当x变化时,g(x),g(x)的取值变化情况如下表:,当0x3时,g(x)g(1)40,,又因为g(x)在(3,)上单调递增, 因而g(x)在
2、(3,)上只有1个零点, 故g(x)仅有1个零点.,规律方法 利用导数确定函数零点或方程根个数的常用方法 (1)构建函数g(x)(要求g(x)易求,g(x)0可解),转化确定g(x)的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出g(x)的图象草图,数形结合求解函数零点的个数. (2)利用零点存在性定理:先用该定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该区间上零点的个数.,(1)证明:函数h(x)f(x)g(x)在区间(1,2)上有零点; (2)求方程f(x)g(x)的根的个数,
3、并说明理由.,所以函数h(x)在区间(1,2)上有零点.,而h(0)0,则x0为h(x)的一个零点. 又h(x)在(1,2)内有零点,,因此h(x)在0,)上至少有两个零点.,当x(0,)时,(x)0,因此(x)在(0,)上单调递增, 易知(x)在(0,)内至多有一个零点, 即h(x)在0,)内至多有两个零点, 则h(x)在0,)上有且只有两个零点, 所以方程f(x)g(x)的根的个数为2.,考点二 已知函数零点个数求参数的取值范围 【例2】 函数f(x)axxln x在x1处取得极值.,(1)求f(x)的单调区间; (2)若yf(x)m1在定义域内有两个不同的零点,求实数m的取值范围.,解
4、(1)函数f(x)axxln x的定义域为(0,). f(x)aln x1,因为f(1)a10,解得a1, 当a1时,f(x)xxln x,即f(x)ln x,令f(x)0,解得x1; 令f(x)0,解得0x1. 所以f(x)在x1处取得极小值,f(x)的单调递增区间为(1,),单调递减区间为(0,1).,(2)yf(x)m1在(0,)内有两个不同的零点,可转化为yf(x)与ym1图象有两个不同的交点. 由(1)知,f(x)在(0,1)上单调递减,在(1,)上单调递增,f(x)minf(1)1,,由题意得,m11, 即m2, 当0e时,f(x)0. 当x0且x0时,f(x)0; 当x时,显然f
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 高考 数学 设计 一轮 复习 第三 导数 及其 表示 课时 函数 零点 课件 新人 PPTX

链接地址:http://www.mydoc123.com/p-1111937.html