[考研类试卷]考研数学三(多元函数微分学)模拟试卷5及答案与解析.doc
《[考研类试卷]考研数学三(多元函数微分学)模拟试卷5及答案与解析.doc》由会员分享,可在线阅读,更多相关《[考研类试卷]考研数学三(多元函数微分学)模拟试卷5及答案与解析.doc(15页珍藏版)》请在麦多课文档分享上搜索。
1、考研数学三(多元函数微分学)模拟试卷 5 及答案与解析一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。1 设 则 f(x,y)在(0 ,0)处 ( )(A)对 x 可偏导,对 y 不可偏导(B)对 x 不可偏导,对 y 可偏导(C)对 x 可偏导,对 y 也可偏导(D)对 x 不可偏导,对 y 也不可偏导2 设 fx(x0,y 0),f y(x0,y 0)都存在,则( )(A)f(x,y)在(x 0,y 0)处连续(B)(C) f(x,y)在(x 0,y 0)处可微(D)3 设 f(x,y)在点(0,0)的某邻域内连续,且满足 则函数 f(x,y)在点(0,0)处 ( )(A)取
2、极大值(B)取极小值(C)不取极值(D)无法确定是否有极值4 设 f(x,y)在(0,0)的某邻域内连续,且满足 则f(x,y)在(0,0)处( )(A)取极大值(B)取极小值(C)不取极值(D)无法确定是否取极值二、填空题5 设 z=(x2+y2)xy,则6 设 f 二阶可导,7 设 f 二阶可偏导,z=f(xy,z+y 2),则8 设 f(x,y)连续,且 f(x, y)=3x+4y+6+(),其中 则 dz|(1,0)=_9 设 z=f(x,y)二阶连续可导,且 fx(x,0)=2x,f(0 ,y)=sin2y,则f(x,y)=_,10 11 12 由 x=zey+z 确定 z=z(x,
3、 y),则 dz|(c,0)=_13 14 三、解答题解答应写出文字说明、证明过程或演算步骤。15 设 z=f(t2,e 2t)二阶连续可偏导,其中 f 二阶连续可偏导,求16 设 z=f(exsiny,xy),其中 f 二阶连续可偏导,求17 u=f(x2,xy ,xy 2z),其中 f 连续可偏导,求18 设 z=f(x,y)在点(1,1)处可微,f(1 ,1)=1 ,f 1(1,1)=a,f 2(1,1)=b,又u=fx, f(x,x) ,求19 20 设 y=y(x), z=z(x)由 确定,求21 设 z=z(x,y)是由 所确定的二元函数,其中 F 连续可偏导,求22 求二元函数
4、f(x,Y)=x 3 一 3x2 一 9x+y2 一 2y+2 的极值22 已知 z=f(x,y)满足:dz=2xdx 一 4ydy 且 f(0,0)=523 求 f(x,y)24 求 f(x,y)在区域 D=(x,y)|x 2+4y24上的最小值和最大值25 设 u=xyz,求 du26 设 z=yf(x2 一 y2),其中 f 可导,证明:27 设 u=f(x+y,x 2+y2),其中 f 二阶连续可偏导,求28 设 z=fxg(y),xy ,其中 f 二阶连续可偏导,g 二阶可导,求29 设 z=z(x,y)由 xyz=x+y+z 确定,求30 举例说明多元函数连续不一定可偏导,可偏导不
5、一定连续31 设 讨论函数 f(x,y)在点(0,0)处的连续性与可偏导性32 讨论 在点(0,0)处的连续性、可偏导性及可微性33 设 试讨论 f(x,y)在点(0,0)处的连续性,可偏导性和可微性34 设 z=f(esint,tant),求35 设考研数学三(多元函数微分学)模拟试卷 5 答案与解析一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。1 【正确答案】 B【试题解析】 因为 不存在,所以f(x,y)在(0,0)处对 x 不可偏导; 因为所以 fy(0,0)=0,即 f(x,y)在(0,0)处对 y 可偏导,选(B)【知识模块】 多元函数微分学2 【正确答案】 D【试
6、题解析】 多元函数在一点可偏导不一定在该点连续,(A)不对; 函数在(0,0)处可偏导,但 不存在,(B)不对;f(x,y)在(x 0,y 0)处可偏导是可微的必要而非充分条件,(C)不对,选(D),事实上由 存在得【知识模块】 多元函数微分学3 【正确答案】 A【试题解析】 因为 根据极限保号性,存在 0,当时,有 而 x2+1 一 xsiny0, 所以当时,有 f(x,y)-f(0,0)【知识模块】 多元函数微分学4 【正确答案】 A【试题解析】 因为 所以由极限的保号性,存在0,当 时, 因为当时,|x|+y 20,所以当 时,有 f(x,y)f(0,0),即 f(x,y) 在(0,0)
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考研 试卷 数学 多元 函数 微分学 模拟 答案 解析 DOC
