NASA-TR-R-50-1959 Approximations for the Thermodynamic and Transport Properties of High-Temperature Air《高温空气的热力学和运输性能近似值》.pdf
《NASA-TR-R-50-1959 Approximations for the Thermodynamic and Transport Properties of High-Temperature Air《高温空气的热力学和运输性能近似值》.pdf》由会员分享,可在线阅读,更多相关《NASA-TR-R-50-1959 Approximations for the Thermodynamic and Transport Properties of High-Temperature Air《高温空气的热力学和运输性能近似值》.pdf(42页珍藏版)》请在麦多课文档分享上搜索。
1、_r_NASA TR R-50NATIONAL AERONAUTICS ANDSPACE ADMINISTRATIONt / ,y.2 _, . - .,., . . n energyof 7.37 electron volts l)er nlole(ule and the otherto (,).76 ele(tron volts per molecule. At first, (helower value was widely accepted as the mostprobable one (lierzberg, rcf. 3). Krieger andWhite (ref. 4) an
2、d Ilirsehfehh,r and Curtiss (ref.5) have published tables of thermodynamic prop-erties of high-tenH)eraturc air based on this value.(blydon (r(,f. 6) was l)erhaps one of the first advo-(ales of the view that (he higher value was the(orrect one. Su/)sequently a ntmll)er of exl)eri-ments were performe
3、d whi(h (onlirmed (,aydonsO)illi()l)_ l)lIl()g helll he )neaslllelll(ql,_ of sl)o)gsho(k waves in nitrogeu made 1)y (hrislian, Duff,and Yarger (ref. 7) and the delom)tion studiesmade by isiiakowsky, Knight, am Malin (ref.S). This reu(h,r(d the work of references 4 am| 5()bs0et(, but :barfly lhl,reaf
4、t(r (;ihnore (ref. 9)(.omputed the ehemi(al (.omposition, em,rgy,entropy, compressibility, and pressure of qir asfun(.tions of temperalur( and (l(,nsity based (in thehivher value for the (liss()(iati()n ()f nilro_en.t_ater, lilsemath and Be(k(tt 0ef. 10) 1)u)lish(la similar tal)le of these t)rot)erl
5、ies, I)ut in muchsmaller in()eme)lts ()f (ql)p()alllF( ll.lld (h,nsily.The (ahulations in Iiolh of th(,se r(,feren(es (9 aml10) are highly refined in the sense (hat they no()nly account for tile major (Iml)(me)ts 20)- T - -+“ In Qp(O)-ln Q,(O_) (20atIn K_(No2N)= -113_00+2 In Qp(N)-ln Q,(N2) (20b)158
6、,000In/kp(O-+O+-) =“ T fin ,(O+ t+ln Q/e-)-ln Qp(O) (20c)lt;8,g00,hlKp(N-_N+e-)- - T tm Qp(N*)+ln Qp(e-)-ln Qp(N) (20d)The concentration equilibrium constant is de-fined byK,=iin% (A 0 (21)where *_(At) and n(li_) are, respectively, theconcentrations of the chemical reactants andproducts. This quanti
7、ty will also be needed forsubsequent calcubttions, and it is obltdned byiephlcing the pressure standaMized liar(it(onfunctions, Qv, with the correspondillg conc(mtla-(ion stan(hudizod partition fun(tions, Q_, inequation (19). From equation (6) it is seenlhatI(,- I(v( ll)=“,-b_ (223The logarithmic de
8、rivatiws of the equilibrhmlconstants will also be required later. Fromequations (5), (10), and (19) these beconleT d In K, .XEo (E-If,|,IT - lit F T_, b _-:?T-/,-_, a_ -_,_- (23) 1,7 /.,5/,d In Ap_ T d hi K,dT 17 _-_ b,-_ (t_ (24)The equilibrium constants and their logarithmicderivatives for the rea
9、ctions represented t)y equa-tions (20at through (20(l) are listed as functionsof temperature in table III. A populationweighted average quantity is given for the oxygenand nitrogen iouizatimt reaction. These quantitieswill lit)iv 1)e its(,( ill eah,ulatitlg the component nlolfractions and their deri
10、vatives.CALCULATION OF THE EQUILIBRIUM MOL FRACTIONS ANDTHEIR DERIVATIVESTim possil)ility /hat apltroximaie solutions inclosed form couht be obtained for the propertiesof air suggests itself upon examination of theresults of Gilmore (ref. 9). IIis tal)les of thecompositot_ of air show that there are
11、 fourchemical reactions of major importance. Theseare the, dissociation of nmlecular oxygen andmolecu_:ar nitrogen, and the ionization of atoinicoxygen mid of atomic nitrogen.02 20 (25a)N2 2N (25)O - O _+e- (25c)N -_ N+e - (25(t)With (:he exception, all other reactions whichcccur 3Md component conce
12、ntrations which arethe or(l,_r of 0.1 percent, or less. The exceptionis the forination of ifitric oxide, NO, which at sealevd (hnsily lnay become as much as 10 pert(mrof the _,ir aroun(l 5000 K. lh)wever, even thismuch nit, rio oxi(lc does not strongly inlhlen(e theresultin ,_thernmdynanlic properti
13、es of air, and atdensitie_ less than 0.01 noImal set_ lew_l density,where tae NO is less than 1 percent at its inaxi-InUre, 1,71ceffects arc very slnall.Two distinctive features of the chemical reac-tions gi_,en above are (d)servat)h; front Gilmoresresults. The tirst is thai at, all I)r(,ssures the
14、dis-sot(alto t of oxygen is csst,ntia, lly comph,le t(,forethe (lis.,oci_iion of nit.rogen |)(,gins. This meanstha.t th(se two roact,ions cmt be treated independ-ently fi,r the imrposes cf approxinlation. Thesccon(l :eat ure is l hat nitrogen and oxyg(n atomsionize at about the s,tme telnperatur(_ a
15、nd withabout t m same energy changes. Consequently,it is possible to assume that once air i,-. completelydissocia ed, all atoms constitut(, t_ single specieswhich has the populatior weight.ed average prol)-ert, ies oi the nitrogen and oxygen atoms.Provided by IHSNot for ResaleNo reproduction or netw
16、orking permitted without license from IHS-,-,-THERMODYNAMIC AND TRANSPORT PROPERTIES OF AIRThe equation of state will be definedp_ZRTp- Mo (26)where Z is the compressibility. To the approxi-mation that all of the partich, s obey lhe ideal gaslaw, Z represents the total number of tools formedfrom a t
17、ool of initially undissociated air. It isalso equal to the ratio ef the initial nmlecula.rweight of undissociated air to the mean molecularweight, 3_Io/_ll. If _1 is the fraction of moleculeswhich dissociate into oxygen aloms, E2the flactionof molecules which dissociate into nitrogen atoms,and ea th
18、e fraction of atoms which arc ionized,then the compressibility is given byZ-1 -_ _l-_ E2-_ 2_a (27)The reactions arc now assumed to be independ-ent and, in view of the order of approximationbeing ccnsidered, the ratio of nitrogen to oxygenhas simply been taken as 4 to 1. Then at rela-tively low temp
19、eratures only three major com-ponents exist sinmltaneously: molecular nilrogen,molecular oxygen, and atomic oxygen. The par-tial pressures for these three components may beexpressed0.8p (N2) = a: (N_)p = 1 -_-(_1) (283)p(O2)=x(O2)p=_2-+-_! p (28b)p(O) =, _u)p=l_N+ q e-)(37)The component tool fiaclio
20、lis in air me lhmi givenI)y,(Oa)- 02-lJo/p)_2 _ 8(46b)- (K_a.llo/p) -vI(_a.llo/p)_ 8(K_aMo/p)ca= 4(46c)All the other calculations follow as before, onlythe quantities _l, _:, and _a fronl eqmltions (46a),(4(it), llid (4(ic) replac(, llios(, fronl equiliions(:_0), (: _), and (:_O).With the preceding
21、relations in hand, we are in1)ositiol_ to calcuhite the energy, (,ltirol)y , sp(,cificheat, al d speed of sound for it it.ENERGY, SPECIFIC HEAT, ENTROPY, AND SPEED OF SOUNDFOR AIR IN EtlUILIBRIUNIThe (,nergy per nlol of air is sinli)ly lhe sumt,:= 52_,E,i(47)Provided by IHSNot for ResaleNo reproduct
22、ion or networking permitted without license from IHS-,-,-THE:RMODYNAMIC AND TRANSPOtT PROPERTIES OF AIR 11il)-_ (57)The dimensionless sl)eed of sound parameter,a2p/p, is listed in table IV(f) and is plotted as afunction of teml)ertdure in figure 6. The see(rodterm on the right side of equation (57)
23、is generallynear unity, so that figure 6 is also indicative ofthe variation in 7 with temperature.AERODYNAMIC CONSIDERATIONSThe thermodymunic properties obtained at thispoint are those required to perform calculationsof inviscid air-flow problems. These propertiesare given for a range of lelnperatme
24、 from 500 to 15,000 K and of pressure from 0.0001 to 100atmospheres. It is of interest now to examinethe altitude and velocity at which these condi-tions will occur in flight. A grid of the pressureand teml)erature at, the stagnation point of a bodyin flight is shown in figure 7 as a function ()f fl
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- NASATRR501959APPROXIMATIONSFORTHETHERMODYNAMICANDTRANSPORTPROPERTIESOFHIGHTEMPERATUREAIR 高温 空气 热力学 运输

链接地址:http://www.mydoc123.com/p-836999.html