NASA-TN-D-5408-1969 Static and dynamic stability derivatives of a model of a jet transport equipped with external-flow jet-augmented flaps《装配有外流喷气扩张襟翼喷气运输机模型的静态和动态稳定性导数》.pdf
《NASA-TN-D-5408-1969 Static and dynamic stability derivatives of a model of a jet transport equipped with external-flow jet-augmented flaps《装配有外流喷气扩张襟翼喷气运输机模型的静态和动态稳定性导数》.pdf》由会员分享,可在线阅读,更多相关《NASA-TN-D-5408-1969 Static and dynamic stability derivatives of a model of a jet transport equipped with external-flow jet-augmented flaps《装配有外流喷气扩张襟翼喷气运输机模型的静态和动态稳定性导数》.pdf(53页珍藏版)》请在麦多课文档分享上搜索。
1、STATIC AND DYNAMIC STABILITY DERIVATIVES OF A MODEL OF A JET TRANSPORT EQUIPPED WITH EXTERNAL-FLOW JET-AUGMENTED FLAPS by Delmu C. Freeman, Jr., Sive B. Grafton, und Richurd DAmato Ldngley Reseurcrb Center Lungley Stution, Hampton, Vu, NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C.
2、SEPTEMBER 1969 Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-TECH LIBRARY KAFB, NM 0332205 1. Report No. 2. Government Accession No. NASA TN D-5408 I 4. Title and Subtitle STATIC AND DYNAMIC STABILITY DERIVATIVES OF A MODEL OF A JET TRANSPORT EQUIP
3、PED WITH EXTERNAL-FLOW JET-AUGMENTED FLAPS 7. Authods) Delma C. Freeman, Jr., Sue B. Grafton, and Richard DAmato 9. Performing Organization Name and Address NASA Langley Research Center Hampton, Va. 23365 2. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington,
4、 D.C. 20546 5. Supplementary Notes 6. Abstract 3. Recipients Catalog No. 5. Report Data September 1969 6. Performing Orgonizotion Cod 8. Performing Organization Rep L-6521 IO. Work Unit No. 121-01- 11-03-23 11. Controct or Grant No. 13. Type of Report and Period C Technical Note 14. Sponsoring Agenc
5、y Code A wind-tunnel investigation has been made to determine the static and dynamic stability derivatives of a model of a large jet transport equipped with external-flow jet-augmented flaps. The tests were conducted in thi Langley full-scale tunnel, and a model powered by scale-model, compressed-ai
6、r-driven turbofan engines was u The results of the investigation showed that blowing on the flap system increased the lift-curve slope, delayed the stall, and increased the maximum lift coefficient. The data also showed that all model configuratio generally had static longitudinal stability over the
7、 test angle-of-attack range except those at the higher flap-deflection angles where the effects of power were destabilizing. The results also showed that the model had pc tive damping in pitch, roll, and yaw throughout the test angle-of-attack range up to and slightly beyond the stall for all test c
8、onditions. The application of power in the flap system resulted in appreciable increases in r damping but produced essentially no effects in pitch and yaw damping. There were essentially no effects due to oscillation frequency on the damping derivatives. 17. Key Wards Suggested by Author(s) 18. Dist
9、ribution Statement let-augmented flaps Unclassified - UnlimitedDynamic sta bi I ity 19. Security Classif. (of +his report) M. Security Classif. (of this page) Unclassified Unclassified Provided by IHSNot for ResaleNo reproduction or networking permitted without license from IHS-,-,-STATIC AND DYNAMI
10、C STABILITY DERIVATIVES OF A MODEL OF A JET TRANSPORT EQUIPPED WITH EXTERNAL-FLOW JE T-AUGMENTE D FLAPS By Delma C. Freeman, Jr., Sue B. Grafton, and Richard DAmato Langley Research Center SUMNIARY A wind-tunnel investigation has been made to determine the static and dynamic stability derivatives of
11、 a model of a large jet transport equipped with external-flow jet-augmented flaps. The tests were conducted in the Langley full-scale tunnel, and a model powered by scale-model, compressed-air-driven turbofan engines was used. The results of the investigation showed that blowing on the flap system i
12、ncreased the lift-curve slope, delayed the stall, and increased the maximum lift coefficient. The data also showed that all model configurations generally had static longitudinal stability over the test angle-of-attack range except those at the higher flap-deflection angles where the effects of powe
13、r were destabilizing. The results also showed that the model had positive damping in pitch, roll, and yaw throughout the test angle-of-attack range up to and slightly beyond the stall for all test conditions. The application of power in the flap system resulted in appreciable increases in roll dampi
14、ng but produced essentially no effects in pitch and yaw damping. There were essentially no effects due to oscillation frequency on the damping derivatives. INTRODUCTION A great deal of interest has been shown in the external-flow jet-augmented-flap concept as a means of achieving high lift coefficie
15、nts. In this concept, the jet efflux from pod-mounted engines is deflected upward to blow over the flaps and through slots of the flaps and, thus, induces very high lift on the wing. Early experimental investigations of external-flow jet-augmented flaps on general research models (for example, see r
16、efs. 1to 5) have demonstrated that desirably high lift coefficients can be generated with this system. Recently, a program has been started at the Langley Research Center to investigate the application of the external-flow jet-augmented flap to a large jet transport with high bypass-ratio turbofan e
17、ngines. The results of conventional static wind-tunnel tests of this configuration are reported in reference 6 and show that the external-flow jet-augmented flap offered a promising means of achieving improved take-off and landing Provided by IHSNot for ResaleNo reproduction or networking permitted
18、without license from IHS-,-,-LllllII I I 1111111111111 11111111.11111.1.1111.11.11.1 .II-I .111-1.1 I performance for large jet transports. Because of these promising results, a program has been initiated to evaluate the dynamic stability, flight characteristics, and general piloting techniques of s
19、uch a configuration. This work is to be conducted with a fixed-base simulator requiring aerodynamic inputs in the form of static and dynamic stability derivatives of the particular configuration under study. As part of the overall program, the present investigation was undertaken to measure the stat
20、ic and dynamic stability derivatives of the jet-transport model with an external-flow jet-augmentedflap. The model used in the investigation was powered by four high-bypass-ratio turbo fan engines and could be equipped with double-slotted trailing-edge flaps for use in an external-flow jet-augmented
21、-flap system. The flap configurations tested represented possible landing-approach and take -off configurations. The dynamic stability derivatives were determined in pitching, rolling, and yawing forced-oscillation tests at two different frequencies over an angle-of-attack range. In order to help in
22、terpret the dynamic data, the static longitudinal and lateral stability characteristics of the model were also deter mined and are presented. SYMBOLS The longitudinal data are referred to the stability-axis system and the lateral data are referred to the body-axis system. (See fig. 1.) The origin of
23、 the axes was located to correspond to the center-of -gravity position (0.25 mean aerodynamic chord) shown in figure 2. In order to facilitate international usage of data presented, dimensional quantities are presented both in the U.S. Customary Units and in the International System of Units (SI). E
24、quivalent dimensions were determined by using the conversion factors given in reference 7. b wing span, feet (meters) aCL cLa lift-curve slope, aa, C local wing chord, inches (centimeters) -C mean aerodynamic chord, feet (meters) FD drag force, pounds (newtons) FL lift force, pounds (newtons) FX for
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- NASATND54081969STATICANDDYNAMICSTABILITYDERIVATIVESOFAMODELOFAJETTRANSPORTEQUIPPEDWITHEXTERNALFLOWJETAUGMENTEDFLAPS

链接地址:http://www.mydoc123.com/p-836863.html