ITU-R P 1058-2-1999 Digital Topographic Databases for Propagation Studies《用于传播研究的数字拓扑数据库》.pdf
《ITU-R P 1058-2-1999 Digital Topographic Databases for Propagation Studies《用于传播研究的数字拓扑数据库》.pdf》由会员分享,可在线阅读,更多相关《ITU-R P 1058-2-1999 Digital Topographic Databases for Propagation Studies《用于传播研究的数字拓扑数据库》.pdf(7页珍藏版)》请在麦多课文档分享上搜索。
1、STDeITU-R RECMN P-1058-2-ENGL L999 = 4855232 053b95b 578 Rec. ITU-R P.1058-2 99 RECOMMENDATION ITU-R P.1058-2 DIGITAL TOPOGRAPHIC DATABASES FOR PROPAGATION STUDIES (Question TTZJ-R 20213) (1994-1997-1999) The ITU Radiocommunication Assembly, considering that the application of propagation prediction
2、 models requires topographical information; that future propagation prediction models will be able to make use of more detailed topographic information; the need to provide practical engineering advice on the preparation of digital topographic maps for propagation a) b) c) prediction; d) e) that dat
3、a exchange is required between different administrations; that it is desirable to establish a worldwide topographic database, recommends I I 1 2 the information contained in 0 5 of Annex 1; 3 4 include details of the type and height of the ground cover; 5 topographic database. that topographic datab
4、ase coordinate systems should be determined according to 5 2 of Annex 1; that the horizontal spacing of data values in a topographic database should be determined taking into account that topographic databases should unambiguously identify sea and lake surfaces, including their heights; that topogra
5、phic databases should contain information about ground cover, either man-made or natural, and that the additional information contained in Annex 1 should be taken into account when setting up a ANNEX 1 1 Introduction Digital topographic databases established for the purpose of propagation prediction
6、s need to contain information which is related to the type of prediction being undertaken. For frequencies above about 30 MHz, information about the terrain height and ground cover is currently needed. For detailed propagation predictions for frequencies above about 1 MHz, especially in urban areas,
7、 information about the location, size and orientation of individual buildings is currently needed in addition to terrain height information. It is to be expected that increasingly sophisticated prediction models will be developed which will permit more detailed propagation predictions but which will
8、 also demand more detailed information and, potentially, a reduced horizontal spacing for the data samples. The purpose of this Annex is to provide guidance on the type of information which should be contained within topographic databases and on suitable values of horizontal spacing for the data sam
9、ples. It must be noted that a very wide range of uses for topographic databases can be foreseen and also that a very wide range of ground cover information can be identified. In any individual geographic region, it is unlikely that all types of ground cover will be found and this has an important im
10、plication with regard to the data storage. While a universal set of ground cover information could be developed, many of the categories would be irrelevant in the majority of specific topographic COPYRIGHT International Telecommunications Union/ITU RadiocommunicationsLicensed by Information Handling
11、 Services. - STDmITU-R RECMN P.LO58-2-ENGL L999 = 4855212 053b957 404 D 100 Rec. ITU-R P.1058-2 database applications. This implies a requirement for unnecessary storage capacity. Under such circumstances, it does not seem appropriate at present to develop a set of ground cover categories which woul
12、d be used in the same way in all applications. Guidance can, however, be given on the categories which have been found appropriate and those which I seem likely to be worth further investigation. I No universal storage format can be proposed for similar reasons to those given above. However, it is c
13、onsidered to be desirable that propagation prediction computer routines should access the database by means of suitable interface software. In this way, the contents and structure of the database may be modified as more information becomes available and, with suitable changes to the interface softwa
14、re, the propagation prediction routines are unaffected. I In order to effect a satisfactory exchange of a topographic database, for example between administrations or from a supplier to a customer, it is essential either that suitable interface software is supplied with the database or that full inf
15、ormation about the database contents and storage scheme are supplied. 2 Coordinate systems Topographic data can be referenced to any of several coordinate systems. These normally fall into one of two major Categories: - angular coordinates, normally latitude relative to the Equator and longitude rel
16、ative to a reference meridian, normally Greenwich; - a rectangular projection applied to a particular area of the Earths surface according to a defined mathematical projection. The principal characteristics of these two systems can be summarized as follows: - latitude-longitude coordinates provide g
17、lobal coverage without discontinuity, but with a non-linear relationship between coordinate values and ground distances. In particular the scale factor between longitude and ground- distance varies with latitude; - rectangular projections approximate to a linear and scale-invariant relationship betw
18、een coordinates and ground distances over a defined geographic area, but must be redefined for different areas to avoid significant distortion. Many national mapping agencies adopt a rectangular projection for paper maps, and for this reason the most detailed topographic data for a given area are of
19、ten indexed at regular intervals of the local projection. Many national mapping systems are based on the transverse Mercator projection. The universal transverse Mercator (UTM) system is a set of such projections based on uniform definitions for different longitudes, with northings referenced to the
20、 Equator. This provides a useful degree of standardization. In some cases there is a preference for projections optimized for accuracy at a specific latitude as well as longitude, in which case individual values for earth elipticity are usually chosen in order to minimize errors. There are also a nu
21、mber of non-transverse Mercator projections. The most suitable choice of coordinate system can depend on several factors, including: - where the highest accuracy is important there is an advantage in retaining the source coordinate system, since conversion to a different system will usually result i
22、n a loss of accuracy; - when extracting short path-profiles data indexed to a rectangular projection provides a useful simplification, since a straight line in the coordinate-space will approximate to a straight line on the ground. The discrepancy when compared with a true great-circle path will dep
23、end on the projection system and the path orientation and length. As a general guide, a straight line in a rectangular projection is typically sufficiently accurate for propagation studies up to about 100 km. However, actual discrepancies will vary according to the projection in use, and will tend t
24、o be greater for West-East path orientations and at higher latitudes. Users should evaluate worst-case errors when laying- out path profiles as a straight line in a rectangular projection; - latitude-longitude coordinates are valuable in providing continuous coverage over wide areas. When great-circ
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ITURP105821999DIGITALTOPOGRAPHICDATABASESFORPROPAGATIONSTUDIES 用于 传播 研究 数字 拓扑 数据库 PDF

链接地址:http://www.mydoc123.com/p-792142.html