ITU-R M 1795-2007 Technical and operational characteristics of land mobile MF HF systems《陆地移动MF HF系统的技术和运行特征》.pdf
《ITU-R M 1795-2007 Technical and operational characteristics of land mobile MF HF systems《陆地移动MF HF系统的技术和运行特征》.pdf》由会员分享,可在线阅读,更多相关《ITU-R M 1795-2007 Technical and operational characteristics of land mobile MF HF systems《陆地移动MF HF系统的技术和运行特征》.pdf(4页珍藏版)》请在麦多课文档分享上搜索。
1、 Rec. ITU-R M.1795 1 RECOMMENDATION ITU-R M.1795 Technical and operational characteristics of land mobile MF/HF systems (Questions ITU-R 1-3/8, ITU-R 7-5/8) (2007) Scope This text provides land mobile service characteristics information for use in sharing studies. The ITU Radiocommunication Assembly
2、, considering a) that land mobile links using frequencies above 30 MHz have a limited range, dependent on varying degrees of topography, vegetation, man-made structures, ground constants, the troposphere and the ionosphere; b) that mobile stations may operate in sparsely populated, remote and diffic
3、ult-to-access areas beyond distance ranges possible using VHF or UHF; c) that frequencies between 2 and 30 MHz can provide distance ranges greater than those possible above 30 MHz using ground-wave or sky-wave propagation as appropriate; d) that mobile stations have practical antenna limitations dep
4、endent on whether operating in motion or at halt; e) that base stations in the land mobile service may also be used in mixed land mobile/fixed networks if the allocation allows it, noting a) that Recommendation ITU-R P.368 provides ground-wave propagation curves according to ground characteristics;
5、b) that Recommendation ITU-R P.533 may be used to predict HF sky-wave propagation at frequencies between 2 and 30 MHz, recommends 1 that for interservice and intraservice frequency sharing studies in the MF/HF bands representative technical and operational characteristics of land mobile systems give
6、n in Annex 1 should be used. 2 Rec. ITU-R M.1795 Annex 1 Specific characteristics of the MF/HF range 1 Introduction Most land mobile operations are conducted at frequencies above 30 MHz. Owing to propagation limitations, VHF/UHF frequencies are reliable only for line-of-sight paths and some distance
7、s beyond, depending on topography, vegetation, man-made structures, ground constants, the troposphere and the ionosphere. Frequencies in the 2-30 MHz range are used for paths exceeding those possible with frequencies above 30 MHz. Ground-wave and sky-wave propagation may be used, according to path d
8、istances, electrical properties of the surface, antenna properties and other factors. 2 Ground-wave and sky-wave factors The distance over which reliable communications can be achieved by the surface, or ground wave, depends on the frequency and the physical properties (i.e. ground conductivity and
9、dielectric constant) of the Earth along the transmission path. A ground wave can only be established with useful efficiency where the wavelength is greater than several tens of metres and is therefore a useful method at MF where reliable communications can be achieved over distances of tens to hundr
10、eds of km. Reliability can, however, be compromised by interference between ground and sky-wave signals. Particularly at MF, the situation can arise where the ground-wave and sky-wave signals are somewhat equal, giving rise to a possibly quite extensive interference zone. Beyond the interference zon
11、e, the sky-wave signal predominates and the ground-wave signal is no longer significant. Often there can be an area where the ground-wave signal is too weak and the distance is too close to the transmitter for a usable sky-wave signal. This situation gives rise to a skip zone, where neither the grou
12、nd-wave or sky-wave signal is usable a common occurrence at MF and the lower HF bands. While ground-wave propagation is not particularly time-dependent, usability and quality of service will vary according to overall conditions such as background noise and interference from other stations and source
13、s. Sky wave may be used for distance ranges up to about 3 000 km using single-hop propagation or as much as 10 000 km using multi-hop propagation. Single-hop propagation using high elevation angles approaching 90 is often referred to as near-vertical-incidence-sky wave (NVIS). NVIS paths range from
14、just beyond the optical line of sight to about 250 km and generally use frequencies below the critical frequency fo(the highest frequency which will be reflected vertically back to ground by any particular layer of the ionosphere depending on its prevailing condition). To avoid problems caused by sh
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ITURM17952007TECHNICALANDOPERATIONALCHARACTERISTICSOFLANDMOBILEMFHFSYSTEMS 陆地 移动 MFHF 系统 技术 运行 特征 PDF

链接地址:http://www.mydoc123.com/p-791900.html