GPA STD 2261-2013 Analysis for Natural Gas and Similar Gaseous Mixtures by Gas Chromatography.pdf
《GPA STD 2261-2013 Analysis for Natural Gas and Similar Gaseous Mixtures by Gas Chromatography.pdf》由会员分享,可在线阅读,更多相关《GPA STD 2261-2013 Analysis for Natural Gas and Similar Gaseous Mixtures by Gas Chromatography.pdf(16页珍藏版)》请在麦多课文档分享上搜索。
1、 Analysis for Natural Gas and Similar Gaseous Mixtures by Gas Chromatography Adopted as Tentative Standard, 1961 Revised and Adopted as a Standard, 1964 Revised 1972, 1986, 1989, 1990, 1995, 1999, 2000 and 2013 Gas Processors Association 6526 East 60th Street Tulsa, Oklahoma 74145 GPA Standard 2261-
2、13 DISCLAIMER GPA publications necessarily address problems of a general nature and may be used by anyone desiring to do so. Every effort has been made by GPA to assure accuracy and reliability of the information contained in its publications. With respect to particular circumstances, local, state,
3、and federal laws and regulations should be reviewed. It is not the intent of GPA to assume the duties of employers, manufacturers, or suppliers to warn and properly train employees, or others exposed, concerning health and safety risks or precautions. GPA makes no representation, warranty, or guaran
4、tee in connection with this publication and hereby expressly disclaims any liability or responsibility for loss or damage resulting from its use or for the violation of any federal, state, or municipal regulation with which this publication may conflict, or for any infringement of letters of patent
5、regarding apparatus, equipment, or method so covered. FOREWARD GPA 2261 provides the gas processing industry a method for determining the chemical composition of natural gas and similar gaseous mixtures using a Gas Chromatograph (GC). The precision statements contained in this standard are based on
6、the statistical analysis of round-robin laboratory data obtained by Section B. This standard was developed by the cooperative efforts of many individuals from industry under the sponsorship of GPA Section B, Analysis and Test Methods. Throughout this publication, the latest appropriate GPA Standards
7、 are referenced “Copyright2013 by Gas Processors Association. All rights reserved. No part of this Report may be reproduced without the written consent of the Gas Processors Association.” 1 1. SCOPE 1.1 This standard covers the determination of the chemical composition of natural gas and similar gas
8、eous mixtures within the ranges listed in Table 1, using a Gas Chromatograph (GC). The three columns represent the original Table 1, but separate the values to three distinct groups. The first group is concentrations lower than the data obtained from the round-robin project (RR-188). The second grou
9、p is concentrations used in the round-robin project (RR-188). The equations listed in the precision statement in this standard cover the range listed in the middle column, after outliers were removed. The third group is concentrations higher than the data obtained from the round-robin project (RR-18
10、8). The precision statement in this standard utilizes equations derived from a regression of the data in RR-188 and is detailed in GPA TP-31. The precision statement criterion applies only to values listed in Section 10, Table 6. 1.2 Components sometimes associated with natural gases, i.e., helium,
11、hydrogen sulfide, water, carbon monoxide, hydrogen and other compounds are excluded from the main body of the method. These components may be determined and made a part of the complete compositional data. Refer to Appendix A. Table I Ranges of Natural Gas Components Covered Component Lower Region Ro
12、und Robin Higher Region Nitrogen 0.01 - 0.1 0.1 - 30 30 Carbon Dioxide 0.01 - 0.1 0.1 - 30 30 Methane 0.01 - 40 40 - 100 N / A Ethane 0.01 - 0.1 0.1 - 10 10 Propane 0.01 - 0.1 0.1 - 10 10 Isobutane 0.01 - 0.25 0.25 - 4 4 n-Butane 0.01 - 0.25 0.25 - 4 4 Isopentane 0.01 - 0.12 0.12 - 1.5 1.5 n-Pentane
13、 0.01 - 0.12 0.12 - 1.5 1.5 * Hexanes Plus 0.01 - 0.1 0.1 - 1.5 1.5 * Heptanes Plus 0.01 - 0.1 0.1 - 1.5 1.5 *Data from round robin was only obtained for Hexanes Plus Table Note: Uncertainty in the Lower region can easily be ten times greater and in the higher region two to three times greater than
14、the center column. NOTE 1 Components not listed in Table 1 may be determined by procedures outlined in Appendix A or other applicable analytical procedures. Refer to Appendix A. 2. SUMMARY OF METHOD 2.1 Components to be determined in a gaseous sample are physically separated by gas chromatography an
15、d compared to calibration data obtained under identical operating conditions. A fixed volume of sample in the gaseous phase is isolated in a suitable inlet sample system and entered onto the column. 2.2 The full range analysis of a gaseous sample may require multiple runs to properly determine all c
16、omponents of interest. The primary run is on a partition column to determine air, methane, carbon dioxide, ethane and heavier hydrocarbons. When oxygen/argon content is critical in the unknown sample, or is suspected as a contaminant, a secondary run should be made to determine oxygen/argon and nitr
17、ogen in the air peak on the partition column. When carbon dioxide content in the unknown sample does not fall within the calibrated range on the partition column, a secondary run should be made to determine carbon dioxide content. When helium and/or hydrogen content are critical in the unknown sampl
18、e, a secondary run should be made to determine helium and/or hydrogen. 2.2.1 These analyses are independent and may be made in any order, or may be made separately to obtain less than the full range analysis. The configuration can consist of a single or multiple GCs to accomplish this. Refer to Appe
19、ndix A. 2.3 Response factors or response curves derived from calibration data are essential to accurately determine the composition of an unknown sample. The reference standard blend and the unknown samples must be run using identical GC operating conditions. 3. APPARATUS 3.1 Chromatograph - Any Gas
20、 Chromatograph may be used as long as the specifications for repeatability and reproducibility stated in Section 10 within the round-robin test component ranges listed in Table 1 are met or exceeded. The equipment described in this section has been proven to meet the above requirements; however othe
21、r configurations including portable and online may be acceptable. 3.1.1 Detector - The Thermal Conductivity Detector (TCD) has proven to be a reliable and universal detector for this method. 3.1.2 Sample Inlet System - A gas sampling valve capable of introducing sample volumes of up to 0.500 ml may
22、be used to introduce a fixed volume into the carrier gas stream at the head of the analyzing column. The Analysis for Natural Gas and Similar Gaseous Mixtures by Gas Chromatography 2 sample volume should be repeatable such that successive runs meet the precision requirements of Section 10. NOTE 2 Th
23、e sample size limitation of 0.500 ml or smaller is selected relative to linearity of detector response and efficiency of column separation. Larger samples may be used to determine low-quantity components in order to increase measurement accuracy. 3.1.3 Chromatographic Columns 3.1.3.1 Partition Colum
24、n - This column must separate nitrogen (air), carbon dioxide, and the hydrocarbons methane through n-Pentane. (or n-Hexane when a C7 plus analysis is performed). Silicone DC 200/500, 30% by weight on 80/100 mesh Chromosorb P, acid washed, packed into 30 x 1/8” SS tubing has proven to be satisfactory
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- GPASTD22612013ANALYSISFORNATURALGASANDSIMILARGASEOUSMIXTURESBYGASCHROMATOGRAPHYPDF

链接地址:http://www.mydoc123.com/p-782339.html