ASTM G166-2000(2011) Standard Guide for Statistical Analysis of Service Life Data《使用寿命数据统计分析标准指南》.pdf
《ASTM G166-2000(2011) Standard Guide for Statistical Analysis of Service Life Data《使用寿命数据统计分析标准指南》.pdf》由会员分享,可在线阅读,更多相关《ASTM G166-2000(2011) Standard Guide for Statistical Analysis of Service Life Data《使用寿命数据统计分析标准指南》.pdf(7页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: G166 00 (Reapproved 2011)Standard Guide forStatistical Analysis of Service Life Data1This standard is issued under the fixed designation G166; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision.
2、A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This guide presents briefly some generally acceptedmethods of statistical analyses which are useful in the inter-pretation of service
3、 life data. It is intended to produce acommon terminology as well as developing a common meth-odology and quantitative expressions relating to service lifeestimation.1.2 This guide does not cover detailed derivations, orspecial cases, but rather covers a range of approaches whichhave found applicati
4、on in service life data analyses.1.3 Only those statistical methods that have found wideacceptance in service life data analyses have been consideredin this guide.1.4 TheWeibull life distribution model is emphasized in thisguide and example calculations of situations commonly en-countered in analysi
5、s of service life data are covered in detail.1.5 The choice and use of a particular life distribution modelshould be based primarily on how well it fits the data andwhether it leads to reasonable projections when extrapolatingbeyond the range of data. Further justification for selecting amodel shoul
6、d be based on theoretical considerations.2. Referenced Documents2.1 ASTM Standards:2G169 Guide for Application of Basic Statistical Methods toWeathering Tests3. Terminology3.1 Definitions:3.1.1 material propertycustomarily, service life is consid-ered to be the period of time during which a system m
7、eetscritical specifications. Correct measurements are essential toproducing meaningful and accurate service life estimates.3.1.1.1 DiscussionThere exists many ASTM recognizedand standardized measurement procedures for determiningmaterial properties. As these practices have been developedwithin commi
8、ttees with appropriate expertise, no further elabo-ration will be provided.3.1.2 beginning of lifethis is usually determined to be thetime of manufacture. Exceptions may include time of deliveryto the end user or installation into field service.3.1.3 end of lifeOccasionally this is simple and obviou
9、ssuch as the breaking of a chain or burning out of a light bulbfilament. In other instances, the end of life may not be socatastrophic and free from argument. Examples may includefading, yellowing, cracking, crazing, etc. Such cases needquantitative measurements and agreement between evaluatorand us
10、er as to the precise definition of failure. It is also possibleto model more than one failure mode for the same specimen.(for example,The time to produce a given amount of yellowingmay be measured on the same specimen that is also tested forcracking.)3.1.4 F(t)The probability that a random unit draw
11、n fromthe population will fail by time (t). Also F(t) = the decimalfraction of units in the population that will fail by time (t). Thedecimal fraction multiplied by 100 is numerically equal to thepercent failure by time (t).3.1.5 R(t)The probability that a random unit drawn fromthe population will s
12、urvive at least until time (t). Also R(t) =the fraction of units in the population that will survive at leastuntil time (t)Rt! 5 1 2 Ft! (1)3.1.6 pdfthe probability density function (pdf), denotedby f(t), equals the probability of failure between any two pointsof time t(1) and t(2). Mathematically f
13、(t) =dF t!dt. For thenormal distribution, the pdf is the “bell shape” curve.3.1.7 cdfthe cumulative distribution function (cdf), de-noted by F(t), represents the probability of failure (or thepopulation fraction failing) by time = (t). See section 3.1.4.3.1.8 weibull distributionFor the purposes of
14、this guide,the Weibull distribution is represented by the equation:Ft! 5 1 2 e2StcDb(2)where:1This guide is under the jurisdiction of ASTM Committee G03 on Weatheringand Durability and is the direct responsibility of Subcommittee G03.08 on ServiceLife Prediction.Current edition approved July 1, 2011
15、. Published August 2011. Originallyapproved in 2000. Last previous edition approved in 2005 as G166 00(2005).DOI: 10.1520/G0166-00R11.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume info
16、rmation, refer to the standards Document Summary page onthe ASTM website.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.F(t) = defined in paragraph 3.1.4t = units of time used for service lifec = scale parameterb = shape parameter3.
17、1.8.1 The shape parameter (b), section 3.1.6, is so calledbecause this parameter determines the overall shape of thecurve. Examples of the effect of this parameter on the distri-bution curve are shown in Fig. 1, section 5.3.3.1.8.2 The scale parameter (c), section 3.1.6, is so calledbecause it posit
18、ions the distribution along the scale of the timeaxis. It is equal to the time for 63.2 % failure.NOTE 1This is arrived at by allowing t to equal c in the aboveexpression.This then reduces to Failure Probability = 1e1, which furtherreduces to equal 10.368 or .632.3.1.9 complete dataA complete data s
19、et is one where allof the specimens placed on test fail by the end of the allocatedtest time.3.1.10 Incomplete dataAn incomplete data set is onewhere (a) there are some specimens that are still surviving atthe expiration of the allowed test time, (b) where one or morespecimens is removed from the te
20、st prior to expiration of theallowed test time. The shape and scale parameters of the abovedistributions may be estimated even if some of the testspecimens did not fail. There are three distinct cases where thismight occur.3.1.10.1 Time censoredSpecimens that were still surviv-ing when the test was
21、terminated after elapse of a set time areconsidered to be time censored. This is also referred to as rightcensored or type I censoring. Graphical solutions can still beused for parameter estimation. At least ten observed failuresshould be used for estimating parameters (for example slopeand intercep
22、t).3.1.10.2 specimen censoredSpecimens that were still sur-viving when the test was terminated after a set number offailures are considered to be specimen censored. This isanother case of right censored or type I censoring. See 3.1.10.13.1.10.3 Multiply CensoredSpecimens that were removedprior to th
23、e end of the test without failing are referred to as leftcensored or type II censored. Examples would include speci-mens that were lost, dropped, mishandled, damaged or brokendue to stresses not part of the test.Adjustments of failure ordercan be made for those specimens actually failed.4. Significa
24、nce and Use4.1 Service life test data often show different distributionshapes than many other types of data. This is due to the effectsof measurement error (typically normally distributed), com-bined with those unique effects which skew service life datatowards early failure (infant mortality failur
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTMG16620002011STANDARDGUIDEFORSTATISTICALANALYSISOFSERVICELIFEDATA 使用寿命 数据 统计分析 标准 指南 PDF

链接地址:http://www.mydoc123.com/p-540437.html