ASTM C1025-2015 Standard Test Method for Modulus of Rupture in Bending of Electrode Graphite《石墨电极芯挠曲断裂模数的标准试验方法》.pdf
《ASTM C1025-2015 Standard Test Method for Modulus of Rupture in Bending of Electrode Graphite《石墨电极芯挠曲断裂模数的标准试验方法》.pdf》由会员分享,可在线阅读,更多相关《ASTM C1025-2015 Standard Test Method for Modulus of Rupture in Bending of Electrode Graphite《石墨电极芯挠曲断裂模数的标准试验方法》.pdf(3页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: C1025 15 An American National StandardStandard Test Method forModulus of Rupture in Bending of Electrode Graphite1This standard is issued under the fixed designation C1025; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revisio
2、n, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope*1.1 This test method covers determination of the modulus ofrupture in bending of specimens cut from graphi
3、te electrodesusing a simple square cross section beam in four-point loadingat room temperature.1.2 The values stated in SI units are to be regarded asstandard. No other units of measurement are included in thisstandard.1.3 This standard does not purport to address all of thesafety concerns, if any,
4、associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2C651 Test Method for Flexural Strength of Manufacture
5、dCarbon and GraphiteArticles Using Four-Point Loading atRoom TemperatureC783 Practice for Core Sampling of Graphite ElectrodesE4 Practices for Force Verification of Testing MachinesE691 Practice for Conducting an Interlaboratory Study toDetermine the Precision of a Test Method3. Terminology3.1 Defin
6、itions:3.1.1 electrode graphite, na type of manufactured graph-ite with less restrictive controls on homogeneity and purity,commonly produced to carry current in electric arc furnaces, asa consumable item in electrical discharge machining, and as astructural material in plastic-injection molds.3.1.2
7、 flexural strength, nproperty of solid material thatindicates its ability to withstand a flexural or transverse load,obtained through a measurement of the ultimate load-carryingcapacity of a specified beam in bending.3.1.3 modulus of rupture in bending, nthe value of maxi-mum stress in the extreme f
8、iber of a specified beam loaded tofailure in bending.4. Significance and Use4.1 This test method provides a means for determining themodulus of rupture of a square cross section graphite specimenmachined from the electrode core sample obtained according toPractice C783, with a minimum core diameter
9、of 57 mm. Thistest method is recommended for quality control or qualityassurance purposes, but should not be relied upon to comparematerials of radically different particle sizes or orientationalcharacteristics. For these reasons as well as those discussed in4.2 an absolute value of flexural strengt
10、h may not be obtained.4.2 Specimen SizeThe maximum particle size and maxi-mum pore size vary greatly for manufactured graphiteelectrodes, generally increasing with electrode diameter. Thetest is on a rather short stubby beam, therefore the shear stressis not insignificant compared to the flexural st
11、ress, and the testresults may not agree when a different ratio or specimen size isused.5. Apparatus5.1 The testing machine shall conform to the requirementsof Sections 14 and 17 of Practices E4.5.2 The four-point loading fixture shall consist of bearingblocks or roller assemblies which ensure that f
12、orces applied tothe beam are normal only and without eccentricity. (See TestMethod C651.) The directions of loads and reactions may bemaintained parallel by judicious use of linkages, rockerbearings, and flexure plates. Eccentricity of loading can beavoided by the use of spherical or cylindrical bea
13、rings.Provision must be made in fixture design for relief of torsionalloading to less than 5 % of the nominal specimen strength.Refer to Fig. 1 for a suggested four-point fixture with asemi-articulating roller configuration.5.3 The bearing block diameter shall be between110 and120 of the specimen su
14、pport span, 12 mm to 6 mm. A hardenedsteel bearing block, roller assembly, or its equivalent isnecessary to prevent distortion of the loading member.1This test method is under the jurisdiction of ASTM Committee D02 onPetroleum Products, Liquid Fuels, and Lubricants and is the direct responsibility o
15、fSubcommittee D02.F0 on Manufactured Carbon and Graphite Products.Current edition approved Oct. 1, 2015. Published November 2015. Originallyapproved in 1984. Last previous edition approved in 2010 as C1025 91(2010)1.DOI: 10.1520/C1025-15.2For referenced ASTM standards, visit the ASTM website, www.as
16、tm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.*A Summary of Changes section appears at the end of this standardCopyright ASTM International, 100 Barr Harbor Drive, PO Bo
17、x C700, West Conshohocken, PA 19428-2959. United States16. Test Specimen6.1 SamplingA core sample (minimum of 57 mm diam-eter and 165 mm long) shall be obtained from the electrode inaccordance with Practice C783.6.2 PreparationA test specimen shall be prepared fromthe core to yield a parallelepiped
18、of square cross section. Thefaces shall be parallel and flat within 0.002 mm mm of length.Specimen edges shall be free from visible flaws and chips. Allsurfaces shall be smooth with a surface texture equivalent tothat obtained from a precision band saw or better.6.3 The square cross section specimen
19、 shall be 38 mm by38 mm and at least 153 mm long.6.4 MeasurementsAll dimensions shall be measured to atleast 0.03 mm.6.5 DryingEach specimen must be dried in an oven atgreater than 110 C for 2 h. The specimen must then be cooledto room temperature and stored in a desiccator or dry environ-ment and h
20、eld there prior to testing.NOTE 1Water, either in the form of liquid or as humidity in air, canhave an effect on flexural mechanical behavior. Excessive adsorbed watercan result in a reduced failure stress due to a decrease in fracture surfaceenergy.7. Procedure7.1 Center the specimen in the test fi
21、xture. Make sure thatno extraneous torsional loads are being introduced to thespecimen.7.2 The support span shall be equal to three times thespecimen thickness, 114 mm. The load span shall be one thirdthe support span, 38 mm. Refer to Fig. 1.7.3 Apply the breaking load at a maximum rate of0.02 mm s.
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTMC10252015STANDARDTESTMETHODFORMODULUSOFRUPTUREINBENDINGOFELECTRODEGRAPHITE 石墨电极 挠曲 断裂 标准 试验 方法 PDF

链接地址:http://www.mydoc123.com/p-463089.html