ASTM B223-2003 Standard Test Method for Modulus of Elasticity of Thermostat Metals (Cantilever Beam Method)《恒温金属弹性模量的标准试验方法(悬臂梁法)》.pdf
《ASTM B223-2003 Standard Test Method for Modulus of Elasticity of Thermostat Metals (Cantilever Beam Method)《恒温金属弹性模量的标准试验方法(悬臂梁法)》.pdf》由会员分享,可在线阅读,更多相关《ASTM B223-2003 Standard Test Method for Modulus of Elasticity of Thermostat Metals (Cantilever Beam Method)《恒温金属弹性模量的标准试验方法(悬臂梁法)》.pdf(5页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: B 223 03Standard Test Method forModulus of Elasticity of Thermostat Metals (CantileverBeam Method)1This standard is issued under the fixed designation B 223; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of
2、last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon (e) indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers the determination of the modu-lus of elasticity of thermostat metals at any temperaturebetwee
3、n 300 and + 1000F (185 and 540C) by mountingthe specimen as a cantilever beam and measuring the deflectionwhen subjected to a mechanical load.1.2 The values stated in inch-pound units are to be regardedas the standard.1.3 This standard does not purport to address all of thesafety concerns, if any, a
4、ssociated with its use. It is theresponsibility of the user of this standard to become familiarwith all hazards including those identified in the appropriateMaterial Safety Data Sheet for this product/material as pro-vided by the manufacturer, to establish appropriate safety andhealth practices, and
5、 determine the applicability of regulatorylimitations prior to use.2. Referenced Documents2.1 ASTM Standards:B 388 Specification for Thermostat Metal Sheet and Strip23. Terminology3.1 Definitions:3.1.1 thermostat metala composite material, usually inthe form of sheet or strip, comprising two or more
6、 materials ofany appropriate nature, metallic or otherwise, which, by virtueof the differing expansivities of the components, tends to alterits curvature when its temperature is changed.3.1.2 modulus of elasticitythe ratio, within the elasticlimit of a material, of stress to corresponding strain. In
7、 this testmethod the modulus of elasticity is calculated from theexpression for the deflection of a cantilever beam undermechanical load which is transposed to read as follows:E 5 4Pl3/dbt3where:E = modulus of elasticity, psi or MPa,P = load, lbf or N,l = gage length, in. or mm,d = specimen deflecti
8、on, in. or mm,b = specimen width, in. or mm, andt = specimen thickness, in. or mm.4. Apparatus (Figs. 1-3)4.1 Specimen Holder for securely clamping the test speci-men in a horizontal position as a cantilever beam whenimmersed in a bath at the desired temperature. It shall carry amicrometer depth gag
9、e for reading the deflection of thespecimen and a loading rod for loading the specimen. Both ofthese shall extend sufficiently above the liquid level of the bathto permit the operator to perform the test at the higher testtemperatures.4.1.1 Specimen holder to be made sufficiently rigid to allownorma
10、l handling without distortion.4.2 Loading Rod,18 in. (3.2 mm) or less in diameter, forcarrying the load and transmitting its weight vertically to thefree end of the cantilever specimen. It shall be made of materialthe same as that of the tube which supports the specimenmounting clamps in order to pr
11、event a difference in expansionrates from affecting the deflection readings. The bottom endshall be conically shaped and shall rest in the conical punchmark at the free end of the specimen. Any supports shall permitfree movement with specimen deflection and shall provideelectrical insulation from th
12、e micrometer depth gage. Near thetop shall be a holder for supporting the load. The weight of theloading rod and holder shall be no greater than 1 oz (28 g).4.3 Micrometer Depth Gage, for measuring the deflection ofthe specimen to the nearest 0.0001 in. (0.002 mm). It shall bemounted directly over t
13、he loading rod. The micrometer shaftshall be in the same vertical line as the loading rod, so thatreadings can be taken of the top of the loading rod for no-loadand full-load positions. The gage shall be insulated electricallyfrom the specimen holder and the loading rod.1This test method is under th
14、e jurisdiction of ASTM Committee B02 onNonferrous Metals and Alloys and is the direct responsibility of SubcommitteeB02.10 on Thermostat Metals and Electrical Resistance Heating Materials.Current edition approved June 10, 2003. Published August 2003. Originallyapproved in 1948. Last previous edition
15、 approved in 1997 as B 223 - 97.2Annual Book of ASTM Standards, Vol. 02.04.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.4.4 Load, constructed so that when placed in the holder, itscenter of gravity will coincide with the center of
16、 the loadingrod. It shall be readily detachable for the operators conve-nience in taking no-load and full-load readings and shall not beof sufficient weight to deflect the specimen more than 0.30 in.(7.6 mm).4.5 BathA stirred liquid so that the temperature shall besubstantially constant during the t
17、est.4.6 Electronic Indicator, sensitive, low-current, to give asignal when the micrometer depth gage shaft completes theelectrical circuit across the indicator terminals by touching thetop of the loading rod. The indicator sensitivity shall be suchthat loading rod positions can be determined with a
18、precision of60.0001 in. (0.002 mm).4.7 All metallic components of apparatus, excluding mi-crometer and loads, should be made of very low coefficient ofthermal expansion materials. The recommended material isinvar.5. Precautions5.1 Load and no-load readings of the various trials will notapproximately
19、 duplicate each other in the event the load issufficiently great to overstress the specimen beyond its elasticlimit. In this case a new specimen shall be substituted and alighter load used which will not overstress the material.5.2 Modulus of elasticity measurements to be within themaximum recommend
20、ed temperatures as stated in Specifica-tion B 388.6. Test Specimen6.1 The test specimen shall be the form of a strip approxi-mately 114 in. (31.8 mm) longer than the gage length. Thethickness may be any value between 0.015 and 0.055 in. (0.38FIG. 1 Testing Machine for Determining Modulus of Elastici
21、ty of Thermostat MetalFIG. 2 Specimen Mounting Clamp AssemblyB223032and 1.40 mm); however, corresponding width values shallconform with those in Fig. 4. Width and thickness dimensionsshall be determined with a precision of 60.0001 in. (0.002mm).7. Preparation of Specimen7.1 Gage LengthThe gage lengt
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASTMB2232003STANDARDTESTMETHODFORMODULUSOFELASTICITYOFTHERMOSTATMETALSCANTILEVERBEAMMETHOD 恒温 金属 弹性模量

链接地址:http://www.mydoc123.com/p-460662.html