ASHRAE NA-04-4-1-2004 Distribution of Cooling Airflow in a Raised-Floor Data Center《在活动地板数据中心的冷却气流的分配》.pdf
《ASHRAE NA-04-4-1-2004 Distribution of Cooling Airflow in a Raised-Floor Data Center《在活动地板数据中心的冷却气流的分配》.pdf》由会员分享,可在线阅读,更多相关《ASHRAE NA-04-4-1-2004 Distribution of Cooling Airflow in a Raised-Floor Data Center《在活动地板数据中心的冷却气流的分配》.pdf(6页珍藏版)》请在麦多课文档分享上搜索。
1、NA-04-4-1 Distribution of Cooling Airflow in a Raised-Floor Data Center Subas V. Patankar, Pb.D. Kailash C. Karki, Ph.D. ABSTRACT For reliable operation of computer equipment in a data center; adequate cooling air must besupplied to the equipment. The distribution of cooling air through the perforat
2、ed tiles in a raised-floor data center is governed by the fluid mechanics of the underfloor space. The pressure variation in that space is shown to be the cause of nonuniform distribution of airflow. The various factors that influence the distribution are discussed. The efect offloor height and tile
3、 open area is illus- trated through the results for a simple configuration. The use of variable tile open area and other issues are also discussed. Calculated distributions of airflow rates are used to explain some of the observed behavior in data centers on the basis of fluid mechanics principles.
4、INTRODUCTION Raised-floor data centers are commonly used to house computer servers, telecommunications equipment, and data storage systems. The equipment dissipates a significant amount of heat and must be maintained at acceptable temper- atures for reliable operation. It is not sufficient that the
5、data center as a whole receives the required amount of cooling air. Each piece of equipment must be given the amount of cooling air that corresponds to its heat load. Therefore, special atten- tion must be paid to the distribution of cooling air in the data cent er . This paper uses the fluid mechan
6、ics of the underfloor space to calculate the distribution of the airflow rate through the perforated tiles. The effect of different factors such as the floor height and the open area of the perforated tiles is discussed. THE RAISED-FLOOR CONCEPT Raised-floor data centers use the underfloor plenum be
7、low a raised floor to supply cooling air to the computer equipment. As shown in Figure 1, the computer room air conditioner (CRAC) units push cold air into the plenum, from where it is introduced into the computer room via perforated floor tiles, tile cutouts, and other openings. The raised-floor de
8、sign offers considerable flexibility in placing the computer equipment above the raised floor. The underfloor plenum serves as the distribution chamber for the cooling air. Without the need for any ducting, cooling air can be delivered to any location simply by replacing a solid ti oor tile by a per
9、forated tile. A common arrangement for the perforated tiles and the computer equipment is the so-called “hot aisle-cold aisle” layout, which is shown in the plan view of Figure 1. Perforated tiles are placed in a region called the cold aisle. On each side of the cold aisle, computer racks are placed
10、 with their intake sides facing the cold aisle. A hot aisle is the region between the back ends of two rows ofracks. The cooling air delivered by the perforated tiles is drawn into the intake side of the racks. This air heats up inside the racks and is exhausted from the back of the racks into the h
11、ot aisle. From the hot aisle, the heated air returns to the CRAC units. REQUIREMENTS FOR AIRFLOW DISTRIBUTION A necessary condition for good thermal management is to supply the required airflow through the perforated tiie(s) located near the inlet of each computer server. The heat load can vary sign
12、ificantly across the computer room, and it changes with the addition or reconfiguration of hardware. For all computer servers to operate reliably, the data center design Suhas Patankar is the president and Kailash Karki is a principal engineer at Innovative Research, Inc., Plymouth, Mim. o2004 ASHAA
13、E. 629 CRAC Serverpack Perforated Tile AI I 150 4 Figure 1 A schematic of a raised-Joor data center: must ensure that the cooling air distributes properly, that is, the distribution of airflow rates through perforated tiles meets the cooling air needs of the equipment on the raised floor. When adequ
14、ate airflow is not supplied through the perfo- rated tiles, the internal fans in the server racks tend to draw air from the ceiling space. Since most of this air originates in the hot aisle, its temperature is high. Thus, the cooling of the upper parts of the server racks is seriously compromised. T
15、his behavior is schematically shown in Figure 2. Although the picture is a simplified representation of what really happens, it does capture the main physical phenomenon. Thus, the key to satisfactory cooling in a data center is to deliver the required amount of cooling airflow at the inlet of each
16、server. If the temperature rise of the air flowing through the server is to be limited to 20“F, the airflow requirement can be calculated from Required airflow in CFM = 154 x (the server heat load in kW). This formula is appropriate at sea level. For higher alti- tudes, the required airflow should b
17、e multiplied by the ratio (atmospheric pressure at sea level) / (atmospheric pressure at the local altitude). ROLE OF THE FLOW FIELD UNDER THE RAISED FLOOR Interestingly, the distribution of the cooling airflow through the perforated tiles is governed by the fluid mechanics of the space below the ra
18、ised floor. It is not the large, visible, above-floor space that controls this flow distribution. It is the air movement in the tiny underfloor space that decides how much air will emerge from each perforated tile. To CRAC Unit E:._;+O CFM A 150 CFM, 55OF 150 CFM, 55OF Figure 2 Insuficient cooling a
19、ir-ow. At first sight, it may appear that, once the plenum is pres- surized (by the inflow from the CRAC units), each perforated tile will deliver the same amount of airflow (at least when the perforated tiles are identical in construction). Actually, there is a significant variation in the flow rat
20、es from different perfo- rated tiles. There are many factors that are responsible for the variation. A major factor is the fact that different perforated tiles are located at different distances from the CRAC unit. Further, the pattern of the airflow distribution is somewhat counterintuitive. One ma
21、y expect more flow near the CRAC unit and less away from it. In reality, there is very little flow near the CRAC and very large flow through the perforated tiles located far away. As a result, the computer equipment placed near the CRAC does not get much cooling air. PRESSURE VARIATIONS IN THE UNDER
22、FLOOR SPACE The flow rate through a perforated tile depends on the pressure drop across the tile, that is, the difference between the plenum pressure just below the tile and the room pressure above the raised floor. Pressure variations within the computer room are generally small compared to the pre
23、ssure drop across the perforated tiles. Thus, relative to the plenum, the pressure just above the perforated tiles can be assumed to be uniform. The flow rates through the perforated tiles, therefore, depend directly on the plenum pressure just below the tile. The nonunifonnity in the airflow distri
24、bution is caused by the hori- zontal pressure variations under the raised floor. THE BASIC CAUSE OF FLOW MALDISTRIBUTION The main reason for nonuniform distribution of airflow through the perforated tiles (and its counterintuitive nature) can be understood from the simple example shown in Figure 3.
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASHRAENA04412004DISTRIBUTIONOFCOOLINGAIRFLOWINARAISEDFLOORDATACENTER 活动 地板 数据中心 冷却 气流 分配 PDF

链接地址:http://www.mydoc123.com/p-455496.html