ASHRAE 4782-2005 Techno-Economic Analysis of a Large-Scale Rooftop Photovoltaic System《大型天台光伏系统的技术经济分析》.pdf
《ASHRAE 4782-2005 Techno-Economic Analysis of a Large-Scale Rooftop Photovoltaic System《大型天台光伏系统的技术经济分析》.pdf》由会员分享,可在线阅读,更多相关《ASHRAE 4782-2005 Techno-Economic Analysis of a Large-Scale Rooftop Photovoltaic System《大型天台光伏系统的技术经济分析》.pdf(10页珍藏版)》请在麦多课文档分享上搜索。
1、4782 Techno-Economic Analysis of a Large-Scale Rooftop Photovoltaic System Manohar Kulkarni, PhD, PE Member ASHRAE ABSTRACT This paper presents the optimization process of a grid- connected photovoltaic (Pv) system, which is intended to replace a large-scale thermal solar system on the rooftop of a
2、federal ofice building. A PV energy conversion model is described. Based on this model, array surface tilt angle and array size are optimized. The optimization method is based on maximizing the utilization of the array output energy and, at the same time, minimizing the electricitypowersold to thegr
3、id. An efectiveness factor is introduced that takes into account both of these parameters. The array configuration and the output parameters are determined by comparing several PV modules. A 43.2 kWPVsystem is designed, and operational problems such as harmonic efects and anti-islanding are discusse
4、d. Finally, the system performance is simulated, and through economic analysis it is shown that the cost of PV system can be recouped in 13 years under the current renew- able energy incentive program by the state of Illinois. INTRODUCTION In the past two decades photovoltaics has developed into a m
5、ature technology and has become acceptable worldwide. As a promising renewable energy resource, photovoltaic tech- nology enjoys substantial government supports in research and application in several major industrial countries. The international competition, along with years of experience in manufac
6、turing, research, and development, has resulted in improved photovoltaic module efficiency, cost reduction, and productivity increase. According to Holihan (2003), the worldwide photovoltaic shipment increased four times in the 1990s and reached a peak megawatt generation of 201 MWp in 1999, while t
7、he price of photovoltaic modules has dropped Xiangyang Gong from $3O/Wp in 1970s to $5/Wp now. Although this price is somewhat acceptable, the cost of an entire system still remains relatively high compared with traditional power generation technology. The high cost necessitates that the design para
8、m- eters, such as surface tilt angle and array size, should be opti- mized. A grid-connected photovoltaic system eliminates the need for a battery storage bank, resulting in considerable reduction of the initial cost and maintenance cost. The photo- voltaic system instead uses the grid as a bank whe
9、re the excess electric power can be deposited and when necessary also with- drawn. When the photovoltaic system is applied in buildings, the PV modules usually are mounted on rooftop and facade, which can reduce the size of the mounting structure and land requirements. This paper presents the design
10、 optimization processes for a large-scale rooftop photovoltaic system, which will be used to retrofit the existing thermal solar system on the roof- top of the federal office building in Carbondale, Illinois. This building was constructed in 1978 as one of only three proto- type thermal solar buildi
11、ngs in the United States. The roof of this building was designed to have a slope of 42“ to maxi- mize the reception of solar radiation. After 17 years of oper- ation, the hydronic thermal solar system on the building rooftop was shut down in 1995. Hundreds of thermal solar modules and the racks stil
12、l remain on the roof. As shown in Figure 1, the thermal solar modules are arranged on three roof zones of the building. The southwest array is the largest one, with dimensions of 14.33 m (47 ft) by 28.96 m (95 ft). The northwest array is the smallest having dimensions of 10.67 m (35 ft) by 21.34 m (
13、70 ft). Dimensions of the east array are 14.63 m (48 ft) by 21.34 m (70 ft). Study of the Manohar Kulkarni is a professor and chair of the Department of Mechanical Engineering at the University of North Dakota, Grand Forks, N.D. Xiangyang Gong is a PhD student in the Department of Mechanical Enginee
14、ring at Texas A + c;(ep3 i- p( - “Z“p31 , (2) where 7 is the monthly average hourly radiation per unit area *3=( 2 -w) (8) (7) 2 i + cos(e ) on a horizontal surface. It is estimated from the monthly aver- age daily radiation data given in Table 1. The monthly average difise fraction id/ was develope
15、d by Erbs et al. (1982) as = 1.317-3.023K,+3.372$- 1.7693, The instantaneous diffuse fraction ZdlI is a function of k, as explained by Duffie and Beckman (1991). The long-term probability distribution of kt is a known function of Et, defined as xt = ?I, which can be determined by daily radiation dat
16、a listed in Table 1. The integrals in Equation 5 have been eval- (3) i where Kt is the average ratio of the horizontal solar radiation to the extraterrestrial radiation. The parameter R, in Equation 2 is the ratio of beam radi- ation on the aperture plane to that on a horizontal surface, Cis the con
17、centration ratio, Op is the array tilt angle with respect to the horizontal, and p is the ground reflectance. This concludes the explanation of all parameters in Equation 2 and the term c in Equation 1. Now the parameter in Equation 1 is the average energy conversion efficiency weighted in proportio
18、n to the solar radi- ation. It can be evaluated by the following equation (Siegel et al. 1981; Clark et al. 1984): 1 IC,MAX 2 7i = l,rlp, 1 - Nia- Tr) - -“(l - VIpt) 1 IcP(c)dI, O CU (4) I Here 7, is the monthly average hourly temperature, which is estimated in terms of the monthly average daily tem
19、perature based on the model developed by Erbs et al. (1983). The parameters qr and qpt are array reference energy conversion efficiency and efficiency of the power tracking equipment, respectively. The other terms in Equation 4 are explained in the uated by Liu and Jordan (1 960). kr,max I ksP(k,)dk
20、, = - 0.1551 + 0.9226/(, (9) O kr,mux 1 k;cf)2P(k,)dk, = k,(0.2769 + 0.3184P(zc)dzc = u$; J k;P(k,)dk,+a21; O O 2 Id J k;ff)“(k,)dk, + a31; J k, (7) P(k,)4 O O where kt is the ratio of horizontal solar radiation, Zto the extra- terrestrial radiation, Z,. Parameters a, a2, a3 are constants for given
21、hour and month. They can be evaluated by Equations 6 through 8. 436 ASHRAE Transactions: Research The diffuse radiation approaches the array surface from all unobstructed angles, while direct radiation strikes the array surface from only one angle. Since the atmospheric constitu- ents scatter a port
22、ion of the total beam radiation from the sun, some diffuse radiation always exists even when the sky appears very clear. The orientation of a surface on earth is defined by two angles: the surface tilt or slope angle and the surface azimuth angle. The surface tilt angle indicates how far up from the
23、 hori- zontal a given surface is sloped, while the azimuth angle denotes how the surface is located relative to the true north- south and east-west coordinates (due south represents an azimuth angle of O“, due east is -90“, north is 180“, and west is 90“). A horizontal surface receives the maximum d
24、iffuse radiation but only a minimum reflected radiation. When a south-facing surface is tilted up from horizontal, the amount of diffuse radiation received decreases. However, the receipt of radiation reflected off the ground increases. For the federal building in Carbondale the azimuth angle of the
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ASHRAE47822005TECHNOECONOMICANALYSISOFALARGESCALEROOFTOPPHOTOVOLTAICSYSTEM 大型 天台 系统 技术 经济 分析 PDF

链接地址:http://www.mydoc123.com/p-454365.html