ANSI ISO ASTM 51026-2015 Standard Practice for Using the Fricke Dosimetry System.pdf
《ANSI ISO ASTM 51026-2015 Standard Practice for Using the Fricke Dosimetry System.pdf》由会员分享,可在线阅读,更多相关《ANSI ISO ASTM 51026-2015 Standard Practice for Using the Fricke Dosimetry System.pdf(9页珍藏版)》请在麦多课文档分享上搜索。
1、ISO/ASTM 51026:2015(E)Standard Practice forUsing the Fricke Dosimetry System1This standard is issued under the fixed designation ISO/ASTM 51026; the number immediately following the designation indicates theyear of original adoption or, in the case of revision, the year of last revision.1. Scope1.1
2、This practice covers the procedures for preparation,testing and using the acidic aqueous ferrous ammonium sulfatesolution dosimetry system to measure absorbed dose to waterwhen exposed to ionizing radiation. The system consists of adosimeter and appropriate analytical instrumentation. Thesystem will
3、 be referred to as the Fricke dosimetry system. TheFricke dosimetry system may be used as either a referencestandard dosimetry system or a routine dosimetry system.1.2 This practice is one of a set of standards that providesrecommendations for properly implementing dosimetry inradiation processing,
4、and describes a means of achievingcompliance with the requirements of ISO/ASTM Practice52628 for the Fricke dosimetry system. It is intended to be readin conjunction with ISO/ASTM Practice 52628.1.3 The practice describes the spectrophotometric analysisprocedures for the Fricke dosimetry system.1.4
5、This practice applies only to gamma radiation,X-radiation (bremsstrahlung), and high-energy electrons.1.5 This practice applies provided the following are satis-fied:1.5.1 The absorbed dose range shall be from 20 to 400 Gy(1).21.5.2 The absorbed-dose rate does not exceed 106Gys1(2).1.5.3 For radiois
6、otope gamma sources, the initial photonenergy is greater than 0.6 MeV. For X-radiation(bremsstrahlung), the initial energy of the electrons used toproduce the photons is equal to or greater than 2 MeV. Forelectron beams, the initial electron energy is greater than 8MeV.NOTE 1The lower energy limits
7、given are appropriate for a cylindricaldosimeter ampoule of 12 mm diameter. Corrections for displacementeffects and dose gradient across the ampoule may be required for electronbeams (3). The Fricke dosimetry system may be used at lower energies byemploying thinner (in the beam direction) dosimeter
8、containers (see ICRUReport 35).1.5.4 The irradiation temperature of the dosimeter should bewithin the range of 10 to 60C.1.6 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-p
9、riate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced documents2.1 ASTM Standards:3C912 Practice for Designing a Process for Cleaning Techni-cal GlassesE170 Terminology Relating to Radiation Measurements andDosimetryE178 Practice for
10、Dealing With Outlying ObservationsE275 Practice for Describing and Measuring Performance ofUltraviolet and Visible SpectrophotometersE666 Practice for Calculating Absorbed Dose From Gammaor X RadiationE668 Practice for Application of Thermoluminescence-Dosimetry (TLD) Systems for Determining Absorbe
11、dDose in Radiation-Hardness Testing of Electronic DevicesE925 Practice for Monitoring the Calibration of Ultraviolet-Visible Spectrophotometers whose Spectral Bandwidthdoes not Exceed 2 nmE958 Practice for Estimation of the Spectral Bandwidth ofUltraviolet-Visible Spectrophotometers2.2 ISO/ASTM Stan
12、dards:351261 Practice for Calibration of Routine Dosimetry Sys-tems for Radiation Processing51707 Guide for Estimating Uncertainties in Dosimetry forRadiation Processing52628 Practice for Dosimetry in Radiation Processing2.3 ISO/IEC Standard:ISO/IEC 17025 General requirements for the competence ofte
13、sting and calibration laboratories41This practice is under the jurisdiction of ASTM Committee E61 on RadiationProcessing and is the direct responsibility of Subcommittee E61.02 on DosimetrySystems and is also under the jurisdiction of ISO/TC 85/WG 3.Current edition approved Feb. 9, 2015. Published J
14、une 2015. Originallypublished as ASTM E102684. Last previous ASTM edition E1026 13. Thepresent International Standard ISO/ASTM 510262015(E) replaces ASTME1026 13.2The boldface numbers that appear in parentheses refer to a bibliography at theend of this practice.3For referenced ASTM and ISO/ASTM stan
15、dards, visit the ASTM webiste,www.astm.org, or contact ASTM Customer Service at serviceastm.org. ForAnnual Book of ASTM Standards volume information, refer to the standardsDocument Summary page on the ASTM website.4Available from American National Standards Institute (ANSI), 25 W. 43rd St.,4th Floor
16、, New York, NY 10036, http:/www.ansi.org. ISO/ASTM International 2017 All rights reservedThis international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for theDevelopment of International Standards, Guid
17、es and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.12.4 International Commission on Radiation Units and Mea-surements (ICRU) Reports:5ICRU Report 14 Radiation Dosimetry: X Rays and GammaRays with Maximum Photon Energies Between 0.6 and 50MeVICRU
18、 Report 35 Radiation Dosimetry: Electrons with InitialEnergies Between 1 and 50 MeVICRU Report 64 Dosimetry of High-Energy Photon Beamsbased on Standards of Absorbed Dose to WaterICRU Report 80 Dosimetry Systems for Use in RadiationProcessingICRU Report 85a Fundamental Quantities and Units forIonizi
19、ng Radiation2.5 Joint Committee for Guides in Metrology (JCGM)Reports:6JCGM 100:2008 GUM 1995 , with minor corrections,Evaluation of measurement data Guide to the expressionof uncertainty in measurement2.6 National Research Council Canada (NRCC):PIRS-0815 The IRS Fricke Dosimetry System73. Terminolo
20、gy3.1 Definitions:3.1.1 approved laboratorylaboratory that is a recognizednational metrology institute; or has been formally accredited toISO/IEC 17025; or has a quality system consistent with therequirements of ISO/IEC 17025.3.1.1.1 DiscussionA recognized national metrology insti-tute or other cali
21、bration laboratory accredited to ISO/IEC17025 should be used in order to ensure traceability to anational or international standard. A calibration certificateprovided by a laboratory not having formal recognition oraccreditation will not necessarily be proof of traceability to anational or internati
22、onal standard.3.1.2 molar linear absorption coeffcient (m)a constantrelating the spectrophotometric absorbance (A) of an opticallyabsorbing molecular species at a given wavelength () per unitpathlength (d) to the molar concentration (c) of that species insolution:m5Ad 3c!(1)Unit: m2mol-13.1.3 radiat
23、ion chemical yield (G(x)quotient of n(x)by,where n(x) is the mean amount of a specified entity, x,produced, destroyed, or changed by the mean energy, ,imparted to the matter.Gx! 5Snx!HD(2)Unit: molJ-13.1.4 reference standard dosimetry systemdosimetrysystem, generally having the highest metrological
24、qualityavailable at a given location or in a given organization, fromwhich measurements made there are derived.3.1.5 type I dosimeterdosimeter of high metrologicalquality, the response of which is affected by individual influ-ence quantities in a well-defined way that can be expressed interms of ind
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ANSIISOASTM510262015STANDARDPRACTICEFORUSINGTHEFRICKEDOSIMETRYSYSTEMPDF

链接地址:http://www.mydoc123.com/p-437106.html