ANSI ICEA S-108-720-2012 EXTRUDED INSULATION POWER CABLES RATED ABOVE 46 THROUGH 345 KV《额定电压46至345 KV的挤压绝缘电力电缆》.pdf
《ANSI ICEA S-108-720-2012 EXTRUDED INSULATION POWER CABLES RATED ABOVE 46 THROUGH 345 KV《额定电压46至345 KV的挤压绝缘电力电缆》.pdf》由会员分享,可在线阅读,更多相关《ANSI ICEA S-108-720-2012 EXTRUDED INSULATION POWER CABLES RATED ABOVE 46 THROUGH 345 KV《额定电压46至345 KV的挤压绝缘电力电缆》.pdf(93页珍藏版)》请在麦多课文档分享上搜索。
1、 STANDARD FOR EXTRUDED INSULATION POWER CABLES RATED ABOVE 46 THROUGH 345 KV Approved by AMERICAN NATIONAL STANDARDS INSTITUTENovember 27, 2012 Publication # ANSI/ICEA S-108-720-2012 2012 by ICEA INSULATED CABLE ENGINEERS ASSOCIATION, Inc ANSI/ICEA S-108-720-2012 ICEA S-108-720-2012 STANDARD FOR EXT
2、RUDED INSULATION POWER CABLES RATED ABOVE 46 THROUGH 345 KV StandardICEA S-108-720-2012 Published By INSULATED CABLE ENGINEERS ASSOCIATION, Inc. Post Office Box 1568 Carrollton, Georgia 30112, U.S.A.Approved by Insulated Cable Engineers Association, Inc.: June 6, 2012 Accepted by AEIC: Cable Enginee
3、ring Committee: March 4, 2010 Approved by ANSI: November 27, 2012 Typographical error corrected in Table 9-3 on 3/6/13 Copyright 2012 by the Insulated Cable Engineers Association, Inc. All rights including translation into other languages, reserved under the Universal Copyright Convention, the Berne
4、 Convention for the Protection of Literary and Artistic Works, and the international and Pan American Copyright Conventions. ICEA S-108-720-2012 DATE: 11/27/12 i FOREWORD This Standards Publication for Extruded Insulation Power Cables Rated above 46 to 345 kV (ICEA S-108-720) was developed by the In
5、sulated Cable Engineers Association Inc. (ICEA). ICEA standards are adopted in the public interest and are designed to eliminate misunderstandings between the manufacturer and the purchaser and to assist the purchaser in selecting and obtaining the proper product for his particular need. Existence o
6、f an ICEA standard does not in any respect preclude the manufacture or use of products not conforming to the standard. The user of this Standards Publication is cautioned to observe any health or safety regulations and rules relative to the manufacture and use of cable made in conformity with this S
7、tandard. Requests for interpretation of this Standard must be submitted in writing to the Insulated Cable Engineers Association, Inc., P. O. Box 1568, Carrollton, Georgia 30112. An official written interpretation will be provided. Suggestions for improvements gained in the use of this Standard will
8、be welcomed by the Association. The ICEA expresses thanks to the Association of Edison Illuminating Companies, Cable Engineering Committee for providing the basis for some of the material included herein through their participation in the Utility Power Cable Standards Technical Advisory Committee (U
9、PCSTAC), and to the Institute of Electrical and Electronics Engineers, Insulated Conductors Committee, Subcommittee A, Discussion Group A-14 for providing user input to this Standard. The members of the ICEA working group contributing to the writing of this Standard consisted of the following: F. Ku
10、chta, Chairman E. Bartolucci R. Bristol J. Cancelosi B. Crawford D. Elder B. Fleming L. Hiivala D. Masakowski K. Nuckles A. Pack B. Temple R. Thrash B. Vaughn E. Walcott ICEA S-108-720-2012 DATE: 11/27/12 ii TABLE OF CONTENTS Part 1 GENERAL 1 1.1 SCOPE 1 1.2 GENERAL INFORMATION . 1 1.3 INFORMATION T
11、O BE SUPPLIED BY PURCHASER 1 1.3.1 Characteristics of Systems on which Cable is to be Used 1 1.3.2 Description of Installation 2 1.3.3 Quantities and Description of Cable . 2 1.4 INFORMATION TO BE SUPPLIED BY MANUFACTURER . 2 1.5 DEFINITIONS AND SYMBOLS . 3 Part 2 CONDUCTOR 6 2.0 GENERAL 6 2.1 PHYSI
12、CAL AND ELECTRICAL PROPERTIES . 6 2.1.1 Copper Conductors . 6 2.1.2 Aluminum Conductors 6 2.1.3 Special Conductors . 6 2.1.3.1 Segmental Conductors 72.2 OPTIONAL WATER BLOCKING COMPONENTS FOR STRANDED CONDUCTORS 7 2.3 CONDUCTOR SIZE UNITS . 7 2.4 CONDUCTOR DC RESISTANCE . 7 2.4.1 Direct Measurement
13、of dc Resistance Per Unit Length . 8 2.4.2 Calculation of dc Resistance Per Unit Length 8 2.5 CONDUCTOR DIAMETER 8 Part 3 CONDUCTOR SHIELD 14 3.1 MATERIAL . 14 3.2 EXTRUDED CONDUCTOR SHIELD THICKNESS 14 3.3 PROTRUSIONS AND IRREGULARITIES 14 3.4 VOIDS . 15 3.5 PHYSICAL REQUIREMENTS . 15 3.6 ELECTRICA
14、L REQUIREMENTS 15 3.6.1 Extruded Semiconducting Material . 15 3.6.2 Extruded Nonconducting Material (For EPR Insulation Only) . 15 3.6.3 Semiconducting Tape . 15 3.7 CROSSLINKED (THERMOSET) REQUIREMENTS 15 Part 4 INSULATION 16 4.1 MATERIAL . 16 4.2 INSULATION THICKNESS . 16 4.2.1 Selection of Proper
15、 Thickness 17 4.2.2 Insulation Eccentricity . 18 4.3 INSULATION REQUIREMENTS . 18 4.3.1 Physical and Aging Requirements . 18 4.3.2 Electrical Test Requirements 19 4.3.2.1 Partial-Discharge for Discharge-Free Designs only . 19 4.3.2.2 Voltage Tests . 20 4.3.2.3 Insulation Resistance Test 20 4.3.2.4 D
16、ielectric Constant and Dissipation Factor. 21 4.3.2.5 Discharge (Corona) Resistance for Discharge-Resistant EPR Designs only . 21 ICEA S-108-720-2012 DATE: 11/27/12 iii 4.3.3 Voids, Ambers, Gels, Agglomerates and Contaminants as Applicable 21 4.3.3.1 Crosslinked Polyethylene Insulation (XLPE) 21 4.3
17、.3.2 Ethylene Propylene Rubber (EPR) . 21 4.3.4 Shrinkback - Crosslinked Polyethylene Insulation (XLPE) Only . 21 Part 5 EXTRUDED INSULATION SHIELD 23 5.1 MATERIAL . 23 5.2 EXTRUDED INSULATION SHIELD THICKNESS . 23 5.3 PROTRUSIONS AND IRREGULARITIES 23 5.4 VOIDS . 23 5.5 PHYSICAL REQUIREMENTS . 23 5
18、.6 ELECTRICAL REQUIREMENTS 24 5.5.1 Extruded Semiconducting Material . 24 5.5.2 Semiconducting Tape . 24 5.7 CROSSLINKED (THERMOSET) REQUIREMENTS 24 Part 6 METALLIC SHIELDING . 25 6.1 GENERAL 25 6.2 SHIELDS 25 6.2.1 Helically Applied Tape Shield . 25 6.2.2 Longitudinally Applied And Overlapped Corru
19、gated Tape Shield . 25 6.2.3 Wire Shield 25 6.2.4 Flat Strap Shield 26 6.3 SHEATHS . 26 6.3.1 Lead Sheath 26 6.3.2 Smooth Aluminum Sheath 26 6.3.3 Continuously Corrugated Sheath . 26 6.4 RADIAL MOISTURE BARRIER 27 6.4.1 Bonded Metallic Foil Laminates . 27 6.5 OPTIONAL LONGITUDINAL WATER BLOCKING COM
20、PONENTS . 27 Part 7 JACKET 28 7.1 MATERIAL . 28 7.1.1 Polyethylene, Black . 28 7.1.2 Polyvinyl Chloride 29 7.2 JACKET APPLICATION AND THICKNESS 30 7.2.1 Thickness of Jacket for Tape, Wire Shield and Metallic Foil Laminate . 30 7.2.2 Thickness of Jacket for Sheaths . 30 7.3 OPTIONAL SEMICONDUCTING CO
21、ATING 30 7.4 JACKET IRREGULARITY INSPECTION . 30 7.4.1 Jackets without Optional Semiconducting Coating 30 7.4.2 Jackets with Optional Semiconducting Coating . 30 Part 8 CABLE IDENTIFICATION . 33 8.1 CABLE IDENTIFICATION . 33 8.1.1 Optional Center Strand Identification . 33 8.1.2 Optional Sequential
22、Length Marking 33 Part 9 PRODUCTION TESTS . 34 9.1 TESTING 34 9.2 SAMPLING FREQUENCY. 34 9.3 CONDUCTOR TEST METHODS 34 ICEA S-108-720-2012 DATE: 11/27/12 iv 9.3.1 Method for DC Resistance Determination . 34 9.3.2 Cross-Sectional Area Determination 34 9.3.3 Diameter Determination 34 9.4 TEST SAMPLES
23、AND SPECIMENS FOR PHYSICAL AND AGING TESTS 34 9.4.1 General 34 9.4.2 Measurement of Thickness 34 9.4.2.1 Micrometer Measurements . 35 9.4.2.2 Optical Measuring Device Measurements 35 9.4.3 Number of Test Specimens 35 9.4.4 Size of Specimens 35 9.4.5 Preparation of Specimens of Insulation and Jacket
24、. 36 9.4.6 Specimen for Aging Test 36 9.4.7 Calculation of Area of Test Specimens 36 9.4.8 Unaged Test Procedures 36 9.4.8.1 Test Temperature 36 9.4.8.2 Type of Testing Machine . 36 9.4.8.3 Tensile Strength Test 37 9.4.8.4 Elongation Test 37 9.4.9 Aging Tests . 37 9.4.9.1 Aging Test Specimens 37 9.4
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ANSIICEAS1087202012EXTRUDEDINSULATIONPOWERCABLESRATEDABOVE46THROUGH345KV 额定 电压 46 345 KV 挤压 绝缘 电力电缆 PDF

链接地址:http://www.mydoc123.com/p-434911.html