ANSI ASTM E1325-2016 Standard Terminology Relating to Design of Experiments.pdf
《ANSI ASTM E1325-2016 Standard Terminology Relating to Design of Experiments.pdf》由会员分享,可在线阅读,更多相关《ANSI ASTM E1325-2016 Standard Terminology Relating to Design of Experiments.pdf(7页珍藏版)》请在麦多课文档分享上搜索。
1、Designation: E1325 16 An American National StandardStandard Terminology Relating toDesign of Experiments1This standard is issued under the fixed designation E1325; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last re
2、vision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This standard includes those statistical items related tothe area of design of experiments for which standard defini-tions ap
3、pear desirable.2. Referenced Documents2.1 ASTM Standards:2E456 Terminology Relating to Quality and Statistics3. Significance and Use3.1 This standard is a subsidiary to Terminology E456.3.2 It provides definitions, descriptions, discussion, andcomparison of terms.4. Terminologyaliases, nin a fractio
4、nal factorial design, two or more effectswhich are estimated by the same contrast and which,therefore, cannot be estimated separately.DISCUSSION(1) The determination of which effects in a 2nfactorialare aliased can be made once the defining contrast (in the case of a halfreplicate) or defining contr
5、asts (for a fraction smaller than12) arestated. The defining contrast is that effect (or effects), usually thoughtto be of no consequence, about which all information may be sacrificedfor the experiment.An identity, I, is equated to the defining contrast (ordefining contrasts) and, using the convers
6、ion that A2= B2= C2= I, themultiplication of the letters on both sides of the equation shows thealiases. In the example under fractional factorial design, I = ABCD. Sothat: A = A2BCD = BCD, and AB = A2B2CD=CD.(2) With a large number of factors (and factorial treatment combi-nations) the size of the
7、experiment can be reduced to14,18,oringeneral to12kto form a 2n-kfractional factorial.(3) There exist generalizations of the above to factorials havingmore than 2 levels.balanced incomplete block design (BIB), nan incompleteblock design in which each block contains the same numberk of different vers
8、ions from the t versions of a singleprincipal factor arranged so that every pair of versionsoccurs together in the same number, , of blocks from the bblocks.DISCUSSIONThe design implies that every version of the principalfactor appears the same number of times r in the experiment and thatthe followi
9、ng relations hold true: bk = tr and r (k 1)=(t 1).For randomization, arrange the blocks and versions within eachblock independently at random. Since each letter in the above equationsrepresents an integer, it is clear that only a restricted set of combina-tions (t, k, b, r, ) is possible for constru
10、cting balanced incomplete blockdesigns. For example, t =7, k =4, b =7, = 2. Versions of theprincipal factor:Block11236223473345144562556736671477125block factor, na factor that indexes division of experimentalunits into disjoint subsets.DISCUSSIONBlocks are sets of similar experimental units intende
11、dto make variability within blocks as small as possible, so that treatmenteffects will be more precisely estimated. The effect of a block factor isusually not of primary interest in the experiment. Components ofvariance attributable to blocks may be of interest.The origin of the term“block” is in ag
12、ricultural experiments, where a block is a contiguousportion of a field divided into experimental units, “plots,” that are eachsubjected to a pletely randomized design, na design in which thetreatments are assigned at random to the full set of experi-mental units.DISCUSSIONNo block factors are invol
13、ved in a completely random-ized pletely randomized factorial design, na factorial ex-periment (including all replications) run in a completelyrandomized posite design, na design developed specifically forfitting second order response surfaces to study curvature,constructed by adding further selected
14、 treatments to thoseobtained from a 2nfactorial (or its fraction).DISCUSSIONIf the coded levels of each factor are 1 and + 1 in the2nfactorial (see notation 2 under discussion for factorial experiment),the (2n + 1) additional combinations for a central composite design are1This terminology is under
15、the jurisdiction ofASTM Committee E11 on Qualityand Statistics and is the direct responsibility of Subcommittee E11.10 on Sampling/ Statistics.Current edition approved April 1, 2016. Published April 2016. Originallyapproved in 1990. Last previous edition approved in 2015 as E1325 15. DOI:10.1520/E13
16、25-16.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.Copyright ASTM International, 100 Barr Harbor Drive, PO
17、 Box C700, West Conshohocken, PA 19428-2959. United States1(0, 0, ., 0), (6a, 0, 0, ., 0) 0, 6a, 0, ., 0) ., (0, 0, ., 6 a). Theminimum total number of treatments to be tested is (2n+2n + 1) fora2nfactorial. Frequently more than one center point will be run. For n= 2, 3 and 4 the experiment requires
18、, 9, 15, and 25 units respectively,although additional replicate runs of the center point are usual, ascompared with 9, 27, and 81 in the 3nfactorial. The reduction inexperiment size results in confounding, and thereby sacrificing, allinformation about curvature interactions. The value of a can be c
19、hosento make the coefficients in the quadratic polynomials as orthogonal aspossible to one another or to minimize the bias that is created if the trueform of response surface is not quadratic.confounded factorial design, na factorial experiment inwhich only a fraction of the treatment combinations a
20、re runin each block and where the selection of the treatmentcombinations assigned to each block is arranged so that oneor more prescribed effects is(are) confounded with the blockeffect(s), while the other effects remain free from confound-ing.NOTE 1All factor level combinations are included in the
21、experiment.DISCUSSIONExample: Ina23factorial with only room for 4treatments per block, the ABC interaction(ABC: (1) + a+bab+cacbc+abc) can be sacrificedthrough confounding with blocks without loss of any other effect if theblocks include the following:Block 1 Block 2Treatment (1) aCombination ab b(C
22、ode identification shown in discus-sion under factorial experiment)acbccabcThe treatments to be assigned to each block can bedetermined once the effect(s) to be confounded is(are) defined.Where only one term is to be confounded with blocks, as in thisexample, those with a positive sign are assigned
23、to one blockand those with a negative sign to the other. There aregeneralized rules for more complex situations. A check on allof the other effects (A, B, AB, etc.) will show the balance of theplus and minus signs in each block, thus eliminating anyconfounding with blocks for them.confounding, ncomb
24、ining indistinguishably the main effectof a factor or a differential effect between factors (interac-tions) with the effect of other factor(s), block factor(s) orinteraction(s).NOTE 2Confounding is a useful technique that permits the effectiveuse of specified blocks in some experiment designs. This
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ANSIASTME13252016STANDARDTERMINOLOGYRELATINGTODESIGNOFEXPERIMENTSPDF

链接地址:http://www.mydoc123.com/p-432519.html