ANSI ASME B89.7.2-1999 Dimensional Measurement Planning《尺寸测量规划》.pdf
《ANSI ASME B89.7.2-1999 Dimensional Measurement Planning《尺寸测量规划》.pdf》由会员分享,可在线阅读,更多相关《ANSI ASME B89.7.2-1999 Dimensional Measurement Planning《尺寸测量规划》.pdf(43页珍藏版)》请在麦多课文档分享上搜索。
1、Copyright ASME International Provided by IHS under license with ASMENot for ResaleNo reproduction or networking permitted without license from IHS-,- STD*ASME 687.7.2-ENGL L779 D 0757670 0635963 L)74 The American Society of Mechanical Engineers AN AMERICAN NATIONAL STANDARD MEASUREMENT PLANNING I Co
2、pyright ASME International Provided by IHS under license with ASMENot for ResaleNo reproduction or networking permitted without license from IHS-,- STD-ASME B89.7.2-ENGL L799 0759b70 Obl157b2 300 m Date of Issuance: March 1, 2000 This Standard will be revised when the Society approves the issuance o
3、f a new edition. There will be no addenda issued to this edition. ASME will issue written replies to inquiries concerning interpretation of technical aspects of this Standard. The interpretations are not part of the Standard. ASME is the registered trademark of The American Society of Mechanical Eng
4、ineers. This code or standard was developed under procedures accredited as meeting the criteria for American National Standards. The Standards Committee that approved the code or standard was balanced to assure that individuals from competent and concerned interests have had an opportunity to partic
5、ipate. The proposed code or standard was made available for public review and comment that provides an opportunity for additional public input from industry, academia, regulatory agencies, and the public-at-large. ASME does not “approve,“ “rate,“ or “endorse“ any item, construction, proprietary devi
6、ce, or activity. ASME does not take any position with respect to the validity of any patent rights asserted in connection with any items mentioned in this document, and does not undertake to insure anyone utilizing a standard against liabilityfor infringement of any applicable Letters Patent, nor as
7、sumes any such liability. Users of a code or standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility. Participation by federal agency representative(s) or person(s1 affiliated with
8、industry is not to be interpreted as government or industry endorsement of this code or standard. ASME accepts responsibility for only those interpretations of this document issued in accordance with the established ASME procedures and policies, which precludes the issuance of interpretations by ind
9、ividuals. No part of this document may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher. The American Society of Mechanical Engineers Three Park Avenue, New York, NY 10016-5990 Copyright O 2000 by THE AMERICAN SOCIETY OF
10、 MECHANICAL ENGINEERS All Rights Reserved Printed in U.S.A. Copyright ASME International Provided by IHS under license with ASMENot for ResaleNo reproduction or networking permitted without license from IHS-,-The intent of this Standard is to facilitate agreement between suppliers and customers by s
11、pecifying a standard method for assessing the dimensional acceptability of workpieces. Components of the method are the preparation of an adequate dimensional measurement plan and use of the plan in making measurements. The major input to the method is dimensional specifications developed, for examp
12、le, in compliance with ASME Y 14.5M, Dimensioning and Tolerancing. The first publication of Y14.5 was a significant step forward in manufacturing because it defined methods for the unambiguous expression of design intent on workpiece drawings. Y14.5 specifies design intent in terms of workpiece feat
13、ures (e.g., cylinders, planes, spheres, etc.). A feature is dimensioned by specifying boundaries within which the infinite number of points in the feature surface must lie. Any adequate assessment of whether a feature complies with a Y14.5 drawing specification must consider this infinite number of
14、points. In the early days of Y 14.5, serious attempts to determine compliance of workpiece features with drawings were based on gaging by attributes, e.g., by means of ring gages, plug gages, and functional gages. These gages dealt with the infinite number of points by means of gaging surfaces which
15、 were the ideal counterparts of the surfaces to be measured. Uncertainty due to gage errors was minimized by specifying gages that were highly accurate compared with tolerances of the parts to be measured. Gage dimensions were biased to ensure that no bad parts were accepted, even though such biasin
16、g resulted in the rejection of a few good parts. Since the accuracy of manufacturing processes has improved more rapidly than the accuracy of gaging by attributes, the old methods have led to expensive increases in the rejection of good parts. Statistical analysis capabilities and cost effectiveness
17、 have led to the proliferation of coordinate measuring machines which cannot directly verify dimensional acceptability of the infinite number of points in a workpiece feature surface. In some instances the algorithms used to develop substitute geometries have not been adequate representations of dra
18、wing specifications. Working Group B89.3.2 (now B89.7.2) was formed to address these and related issues. One of these issues is the criterion for acceptable dimensional measurement practice. The measurement process should be designed to balance measurement quality and cost, including the cost of inc
19、orrect decisions based on measurement results. While the analysis of costs is outside the scope of a dimensional measurement standard, the measurement process should be designed to provide the required metrological data for the analysis. Measurement quality is defined in terms of uncertainty. Previo
20、us practice has been to assume that gaging was sufficiently accurate to ensure that uncertainty was negligible. This assumption was applied both to measurement by attributes as described above and to measurement by variables using simple bench tools, e.g., micrometers and height gages. Gage repeatab
21、ility and reproducibility (GR that is, any two opposite points on the cylindrical surface must be at least 24.99 mm apart (d) all points on the left end surface must lie on or between two planes 0.5 mm apart and perpendicular to the axis of the actual mating envelope of the cylinder. Since the left
22、end is not distinguishable from the right, the perpendicularity requirement is met if either end complies with this specification. (e) the actual mating size of the length must be no greater than 75 mm; that is, all points on the ends of the pin must lie on or between two parallel planes 75 mm apart
23、 and nominally parallel to the pin ends cf, the actual local size of the length must be no less than 74 mm; that is, any two opposite points on the pin ends must be at least 74 mm apart. The DMP requests clarification on the 45 deg chamfer and is told that visual inspection is adequate. This is conf
24、irmed by a memorandum. A2.1.2 Review Manufacturing Plan and Manufacturing Process Failure Mode and Effects Analysis. In this step probable stability of the manufac- turing process, probable modes and consequences of process failure, and part quantities are identified from the manufacturing plan. Thi
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ANSIASMEB89721999DIMENSIONALMEASUREMENTPLANNING 尺寸 测量 规划 PDF

链接地址:http://www.mydoc123.com/p-431950.html