AGMA 07FTM17-2007 Simulation Model for the Emulation of the Dynamic Behavior of Bevel Gears《锥齿轮动态行为模拟用仿真模型》.pdf
《AGMA 07FTM17-2007 Simulation Model for the Emulation of the Dynamic Behavior of Bevel Gears《锥齿轮动态行为模拟用仿真模型》.pdf》由会员分享,可在线阅读,更多相关《AGMA 07FTM17-2007 Simulation Model for the Emulation of the Dynamic Behavior of Bevel Gears《锥齿轮动态行为模拟用仿真模型》.pdf(10页珍藏版)》请在麦多课文档分享上搜索。
1、07FTM17Simulation Model for the Emulation of theDynamic Behavior of Bevel Gearsby: A. Gacka, C. Brecher and T. Schrder,RWTH Aachen UniversityTECHNICAL PAPERAmerican Gear Manufacturers AssociationSimulation Model for the Emulation of the DynamicBehavior of Bevel GearsAdamGacka,ChristianBrecherandTobi
2、asSchrder,LaboratoryforMachineTools and Production Engineering (WZL), RWTH Aachen UniversityThe statements and opinions contained herein are those of the author and should not be construed as anofficial action or opinion of the American Gear Manufacturers Association.AbstractStarting point: Today th
3、e impact of bevel gear deviations on the noise excitation behaviour can only beexamined insufficiently under varying working conditions such as different rotational speed and torque. Thevibration excitation of bevel gears resulting from the tooth contact is primarily determined by the contactconditi
4、ons and the stiffness properties of the gears. By the use of a detailed tooth contact analysis thegeometry based gear properties can be developed and provided for a dynamical analysis ofthe tooth mesh.Researchobjective: Amodelhasbeendevelopedforthesimulationofthedynamicbehaviourofbevelgears.Withthea
5、idofaload-freetoothcontactanalysisthegeometry-basedpartofthepathexcitationisdeterminedat first. With a tooth contact analysis under load the path excitation caused by deflections can be calculated.Thegeometrybasedpartofthepathexcitationandacharacteristicsurfaceoftheexcitationvaluesiscreatedandprovid
6、edfordynamicsimulation.Thebehaviourofthemodelhasbeenverifiedwithasetofhypoidgearsby describing the tooth contact force depending on the rotary speed.Thisdynamicmodelisabletoconsidereverydeviationofthemicro- andmacrogeometryfromtheidealflanktopography, i.e. waves and/or groves in the surface structur
7、e in combination with two and three dimensionalflankdeviationslikeprofiledeviations,helixdeviationsandtwists.Itisalsopossibletoconsidertheinfluenceof friction and the contact impact caused by load and/or manufacturing. errors with a test rig to verify thecalculations.Results: Theresultofthestudyisth
8、einvestigationofthecomplexinfluenceofsurfacestructureswhichresultfrom manufacturing processes, manufacturing deviations and flank corrections on the noise excitation ofbevel gears. The resulting noise excitation can be rated in form of the excitation level with the aid of thisdynamic model.Copyright
9、 2007American Gear Manufacturers Association500 Montgomery Street, Suite 350Alexandria, Virginia, 22314October, 2007ISBN: 978-1-55589-921-91Simulation Model for the Emulation of the Dynamic Behavior of Bevel GearsAdam Gacka, Christian Brecher, and Tobias Schrder, RWTH Aachen UniversityIntroductionDu
10、e to their high efficiency, bevel gear sets arewidely used in industry to transmit torque, generatehigh rotational speeds and change rotation direc-tions. Mostly studies on bevel gear dynamics arebased on experiments or simple formulations con-sideringonlythetorsionalvibrations. Inthispaperaprecise
11、dynamic simulation model of bevel gearpairs is developed. The method combines a finiteelement based tooth contact approach with a multibody dynamic simulation to provide a more accu-rateandcomprehensiveanalysisoftheexcitationinthe tooth mesh. The tooth mesh is modelled as aspring-damper set. The spr
12、ing-damper set is ableto consider all six degrees of freedom. The varyingcharacteristic mesh forces of the spring and thedamper are calculated using a detailed, finite ele-ment based tooth contact analysis. The forces aremultidimensional functions of the rotational trans-mission error under load, th
13、e pinion displacement,the rolling position and if necessary additionally thesliding speed. The considered excitations in thetooth mesh are transmission errors due to profiledeviations, the changing stiffness of the meshingteethasthenumberofteethincontactchangesandthevaryingslidingfriction. Finally,a
14、basictransmis-sion with a bevel gear pair is analyzed for differentoperating speeds.Excitation mechanisms in the tooth meshThemainsource forthe dynamicexcitation ofbevelgears is the tooth mesh 1. In the tooth contact dif-ferent excitation mechanisms are combined to acomplexresultingexcitation. Theth
15、reemostsignifi-cant terms are the unloaded transmission error, thechangingstiffnessofthemeshingteethandthepre-mature tooth contact, Figure 1.The load-free transmission error is caused by geardeviations which lead to a path excitation 3. Themost important gear deviations influencing theexcitation beh
16、aviour under load-free operatingcondition are pitch, flank and profile variations 4,5, 6. But path excitations can also be caused bydevations of 3rd order, as e.g., generated cutdeviationsandevenof4thorder,ase.g.,roughnessdescribing tooth flank surface structures 7. Alldeviations lead to changing op
17、erating conditions,i.e., changing rotational speeds and different loadcarrying torques. In numerous practical tests it isshown that for operation conditions of low specificloads deviations have the main influence on theexcitation in the tooth mesh and on the noise.Figure 1. Excitation mechanisms 22T
18、he second excitation mechanism in the toothcontact results from changing stiffness of themeshing teeth as the number of teeth in contactchanges. This mechanism named as parametricexcitationcausesadditionalvibrations foroperationconditions under load. The domination of theparametric excitation increa
19、ses by higher loadcarrying torques 8.A further excitation mechanism in the tooth meshcan be traced back to the premature tooth contact,9. Under loaded operating conditions the teethand the gear body are deformed. This leads todisturbed kinematic contact conditions in the toothmesh. Consequently, the
20、 first tooth contact occursearlier than under undisturbed conditions and thedriving tooth flank penetrates theoretical the driventooth flank. Out of this results a tooth impact and aforce impulse is generated combined with anadditional sound stimulation.Fundamental procedureAt first, themanufactured
21、 flanktopography mustbedetermined in consideration of the manufacturingprocess, and further of the prescribed quality re-spectively the prescribed flank modifications. Theflank topography canbe determinedwith ageneral-lykeptapproachforthedescriptionofmachinekine-matics of bevel gear cutting machines
22、 10. Themethodsimulatesthemanufacturingprocessbyfol-lowing the penetration of the single tool cuttingbladesthroughthematerial. Thetoolgeometryandthe chosen machining parameters can be conside-red. Based on the geometries of the pinion and thegear resulting from the manufacturing process FEmodels are
23、 generated in the next step.To reach an exact reproduction of gear propertiestheuseofahigh-gradecomputationalapproach,asthe Finite Element Analysis (FEA), is necessary.But the formulation of the contact conditions isproblematic in the Finite Element Analysis, since itis a non-linear problem. FEA is
24、suitable for solvingthe stiffness of gears but the modelling of the toothcontact is a very difficult task. Hence an FE basedtooth contact analysis is used. This FE basedapproach uses the structure properties of an FEmodel and combines them with a simplemathematical spring model to examine the toothc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- AGMA07FTM172007SIMULATIONMODELFORTHEEMULATIONOFTHEDYNAMICBEHAVIOROFBEVELGEARS 齿轮 动态 行为 模拟 仿真 模型 PDF

链接地址:http://www.mydoc123.com/p-422054.html