水力学课件.ppt
《水力学课件.ppt》由会员分享,可在线阅读,更多相关《水力学课件.ppt(600页珍藏版)》请在麦多课文档分享上搜索。
1、主 菜 单,绪论,水静力学,水动力学理论基础,第 二章,第三章,第四章,相似原理与量纲分析,第一章,主 菜 单,流动型态、水流阻力和水头损失,孔口、管嘴出流和有压管路,明渠均匀流,第六章,第七章,第八章,明渠非均匀流,第五章,主 菜 单,堰流,渗流,第十章,第九章,第一章 绪论,1-1 绪 论1-2 液体的连续介质模型1-3 量纲、单位1-4 液体的主要物理性质1-5 作用在流体上的力,第一章 绪论,主要是研究液体在各种情况下的平衡运动规律,为研究的方便起见,该内容又分为流体静力学和流体动力学。,1-1绪 论,一、水力学的定义:,水力学是研究液体的运动规律,以及如何运用这 些规律来解决工程实际
2、问题的科学。,水力学包括:,水力学基础:,专门水力学:,为各种工程实践服务,第一章 绪论,二、水力学和流体力学,水力学:以水为研究对象,在理论上遇到困难 时,通过观测和实验的方法来解决问题。,流体力学:以一般流体(液体和气体)为研究对象,偏重于从理论概念出发,掌握 流体运动的基本规律,但解决实际 工程时,会遇到很大的困难,在应 用上受到一定的限制。,三、水力学在给排水工程中的应用,1、供水工程方面:管网和渠道中的水力计算;,2、水处理厂:各构筑物间的衔接和水流情况;,3、环境的分析和预测:污水排入河中混合情况。,第一章 绪论,四、课程的性质和学习方法,性质:为应用科学,专业基础课,即有理论也
3、有实验。,方法:除理论推导外,实验也不可忽视。,五、教学参考书:,1. 西南交大编 高等教育出版社 2 .(上,下) 清华大学编.高等教育出版社 3. (第二版) 大连工学院高等教育出版社。,第一章 绪论,1-2 液体的连续介质模型,一、概念的建立,1、概念:液体是没有空隙的,液体质点完全充满所占的空间。,“连续介质”概念的建立,使液体中的一切物理量(压强、速度、密度等)都可视为空间坐标和时间的连续函数如:p=f(x,y,z,t)。这样就可以利用连续函数的数学分析方法来解决液体平衡和运动的问题。,第一章 绪论,流体由不连续分布的大量分子组成,10-6 mm3 空气中含有大约2.71010个分子
4、;,10-6 mm3 水中含有大约3.31013个分子。,液体微团(质点):,相对于一般问题中的宏观特征尺寸小到可以被 看成是一个点,但是仍含有足够多个液体分子。,1-3 量纲、单位,一、量纲:表示物理量的特征。,二、量纲的分类:,基本量纲和导出量纲。,1、基本量纲:必须具有独立性,即一个量纲不能从其它基本量纲推导出来,也就是不依赖于其它基本量纲。,如L、T和M是相互独立的,不能从L、T中得出M,也不能从M、T中得出L,但L、T和速度的 量纲V就不是相互独立的,因为V=L/T。,如:长度、时间、质量等。在科学文献中,一般用符号来表示量纲。例如长度或L。,第一章 绪论,在各种力学问题中,任何一个
5、力学量的量纲都可以由L、T、M导出,故一般取长度L、时间T和质量M为基本量纲。,因此:,2、导出量纲:其它物理量的量纲可以由基本量纲推导 出来。,如:X为任意物理量,其量纲可表示为:X=LTM,又如:面积A=L2T0M0 速度V=L1T-1M0,第一章 绪论,三、单位:表征物理量的大小。,国际单位制(SI):米、秒、公斤。,第一章 绪论,1-4 液体的主要物理性质,一、液体的密度:,1、均质液体单位体积内所含的质量,即:,M-均质液体的质量,V-该质量的液体所占的体积,国际单位:公斤/米3 ( kg/m3) 工程单位:公斤秒2/米4 (kg s2/m4),2、非均质液体中,各点的密度不同,,第
6、一章 绪论,若令V代表在某点附近的微小体积, M代表这微小体积的质量,则液体的平均密度为:,当V0时,则该点的密度为:,3、液体的相对密度:,物质的相对密度=,第一章 绪论,二、液体的重度(容重),均质液体的重度是:单位体积的液体的重量。,国际单位:牛顿/米3 (N/m3) 千牛顿/米3 (KN/m3),工程单位:公斤力/米3 (kgf/m3),三、粘性理想液体模型,1、定义:粘性是力学的特性,是液体内部抗拒各层间做相对运动的性质。,液体层与层之间因滑动而产生内摩擦力,具有内摩擦力的液体叫粘性液体或实际液体。,第一章 绪论,2、流速梯度:是指两相邻水层的水流速度差和它们之间的距离之比。,即:,
7、3、内摩擦力的大小:,、与相邻运动液体层的接触面积成正比,、与速度梯度成正比,、视液体的性质而定,、与压力的大小无关,第一章 绪论,4、牛顿内摩擦定律:,单位面积上的力,称为切应力。,液体性质的一个系数,称为粘性系数或动力粘性系数,(单位:NS/m2),运动粘性系数:,单位:米2/秒(m2/s),第一章 绪论,对液体来说,温度升高,则降低,,压力改变对的影响不大,对气体来说,温度升高,则升高,,第一章 绪论,当液体停止流动时,相对速度等于零,内摩擦力将不存在了,所以在静止液体中不呈现内摩擦力。,5、理想液体模型,在水力学中,为了简化分析,对液体的粘性暂不考虑,即=0。从而引出没有粘性的理想液体
8、模型。,注意:,因为理想液体模型没有考虑粘性,所以,必须对粘性引起的偏差进行修正。,第一章 绪论,1、压缩性:液体在一定的压力下,体积缩小的性质,四、液体的压缩性、压缩系数,2、压缩系数:衡量压缩性的大小,用表示(m2/N),即:每增加单位压力,体积压缩的相对值。,对不可压缩液体:忽略其压缩性。,弹性系数K:体积压缩系数的倒数。,第一章 绪论,1-5 作用在流体上的力,按物理性质分:重力、摩擦力、惯性力、弹性力、表面张力,按隔离体的角度分:表面力和质量力,1、表面力:,作用在隔离体表面上的力,,表面力可分为:,法向力P与作用面正交的应力,切应力与作用面平行的应力,是接触性力。,第一章 绪论,2
9、、质量力:,质量力是指作用在隔离体内每个液体微团上的力,其大小与液体的质量成正比,也称为体积力,,是非接触性的力。,如:重力、惯性力。,质量力常用单位质量力来度量。,若: Fx、Fy、Fz分别为总质量力F在各坐标轴上的投影,则单位质量力在相应坐标轴上的投影为X、Y、Z。,有,第一章 绪论,即:,因为:液体的质量和体积成正比,故质量力也称 为体积力。是非接触性的力。,第一章 绪论,第二章 水静力学,2-1静水压强及其特性 2-2液体的平衡微分方程 2-3重力作用下静水压强的分布规律 2-4测量压强的仪器 2-5重力和惯性力联合作用下液体的相对平衡 2-6作用在平面壁上的静水总压力 2-7作用在曲
10、面壁上的静水总压力,第二章 水静力学,一、压强的定义:,单位面积上所受的压力,公式,二、静水压强的特性,第一特性:静水压强垂直于作用面,并指向作用面。,平均压强,点压强,单位:N/m2 (Pa),2-1 静水压强及其特性,证明:取一处于静止或相对平衡的某一液体,静水压强的方向与作用面的内法线方向重合,静水压强是一种,压应力,第二章 水静力学,第二特性:某一点静水压强的大小与作用面的方位无关。,第二章 水静力学,相应面上的总压力为,第二章 水静力学,四面体的体积D V为,总质量力在三个坐标方向的投影为,第二章 水静力学,按照平衡条件,所有作用于微小四面体上 的外力在各坐标轴上投影的代数和应分别为
11、零,第一式中,第二章 水静力学,代入第一式,则:,整理后,有,当四面体无限缩小到A点时,,0,因此:,同理,我们可以推出:,第二章 水静力学,这样我们可以得到:,上式表明任一点的静水压强 p是各向等值的,与作用面的方位无关。第二特性得到证明,第二章 水静力学,2-2 液体的平衡微分方程及其积分,第二章 水静力学,A点的压强为一函数p(x,y,z),泰勒级数展开式为:,运用泰勒级数将p(x,y,z)展开,并忽略二阶以上微量,M点的压强?,坐标,第二章 水静力学,N点压强为:,则:M点压强为:,六面体左右两面的表面力为:,第二章 水静力学,另外作用在微小六面体上的质量力在X轴向的分量为:,根据平衡
12、条件上述各力在X轴上的投影应为零,即:,整理得:,同理,在x,y方向上可得:,第二章 水静力学,上式为液体平衡微分方程。,又称欧拉平衡微分方程,第二章 水静力学,依次乘以dx,dy,dz后相加得:,改写成全微分的形式就是液体平衡微分方程,就是说,静水压强的的分布规律完全是由单位 质量力决定的。,第二章 水静力学,也是函数U(x,y,z)的全微分即:,则函数U(x,y,z)的全微分为:,由此得:,满足上式的函数U(x,y,z)称为力函数或力的势函数,具有这种势函数的质量力称为有势的力。,由此可见: 液体只在有势的质量力作用下才能平衡,第二章 水静力学,等压面:液体中各点压强相等的面。,在等压面上
13、p=常数,即dp=dU=0,而0故dU=0 即U=常数,等压面即等势面。,等压面的重要特性:等压面恒与质量力正交。证明之,在等压面上,式中dx、dy、dz可设想为液体质点在等压面上的任意微小位移 ds在相应坐标轴上的投影。,质量力作的微功为零,而质量力和ds都不为零,所以等压面与质量力必然正交。,第二章 水静力学,2-3重力作用下静水压强的 分布规律,一、水静力学基本方程,重力在坐标轴上的投影分别为:,X=0、Y=0、Z= -g,代入液体平衡方程,得,积分得:,或,第二章 水静力学,即为重力作用下的水静力学基本方程式,上式表明:,在静止液体中,任何一点的( )总是一个常数,对液体内任意两点,上
14、式可写成:,在液体自由表面上,,代入得:,因此:公式,可写成:,第二章 水静力学,对于液体中各点来说,一般用各点在液面以下的深度 代替 , 因此将 代入上式得:,静水全压强,上式即为水静力学基本方程式的另一种形式,它说明:,1、在静止的液体中,压强随深度线性规律变化,2、静止液体中任一点的压强 等于表面压强 与从该点到液体自由表面的单位面积上的液柱重量之和。,应用上式,便可以求出静止液体中任一点的静水压强,第二章 水静力学,二、压强的表示方法和单位,1、压强的表示方法:,绝对压强:数值是以“完全真空”为零(基准)算起的。用Pabs表示。,相对压强:在实际工作中,一般建筑物表面均作用着大气压强,
15、这种以当地大气压强为零算起的压强为相对压强。用P表示。,也称为静水全压强,也叫计算压强,或称表压,用公式表示:,如果自由表面压强 与当地大气压强 相等,则,也称静水超压强或重量压强,第二章 水静力学,绝对压强永远为正值,最小值为零。,相对压强可正可负,当PabsPa时,相对压强P0,工程上把负的相对压强叫做“真空”,几种压强的关系可表示为:,PabsPa,PabsPa,第二章 水静力学,2、压强的单位,、应力表示。如:牛顿/米2 (N/m2);千牛顿/米2 (KN/m2);等。,、工程大气压表示。 如: 一个工程大气压=98 KN/m2=9.8 N/cm2 =9.8104Pa,、用液柱高度表示
16、。,可写成,对于任一点的静水压强 可以用上式化为对任何一种容重为 的液柱高度。,如:水柱、汞柱等,第二章 水静力学,三、静水压强的图示,1、方法,因而,在任一平面的作用面上,其压强分布为一直线。只要算出作用面最上和最下两个点的压强后,即可定出整个压强的分布线。,2、原则,、每一点处的压强垂直于该点处的作用面。,、静水压强的大小随着距自由面的深度而增加,另外:对实际工程有用的是相对压强的图示。如欲绘制绝对压强分布图,则将常量 附加上即可。,第二章 水静力学,例1,ABC 即为相对压强分布图,ABED 即为绝对压强分布图,例2,叠加后余下的红色梯形区域即为静水压强分布图,第二章 水静力学,例3,为
17、一折面的静水压强分布图,先做,再做,则ADEC即为所求压强分布图,第二章 水静力学,例5,右图为一弧形闸门,各点的压强只能逐点计算,且沿半径方向指向圆弧的圆心。,注:,只是要把静水压强的箭头倒转过来即可,并且负的静水压强上大下小,也可以把相对压强改成绝对压强再按上述方法绘制,以上讨论的是P0的例子,对于P0的情况,可同样绘制。,第二章 水静力学,四、测压管高度,测压管水头及真空度,一个密闭容器,P0Pa,则:在水力学中,hA高度即为测压管高度。,这种测量压强的管子叫测压管。,在容器内有,在右管中有,因此,所以:测压管高度hA表示A点的的相对压强(计算压强),第二章 水静力学,若 P0Pa,则:
18、位于测压管中的水位高度将低于容器内液面高度。,即 hAh,那么,真空高度为:,第二章 水静力学,在水力学上,把任一点的相对压强高度(即测压管高度)与该点基准面以上的位置之和称为测压管水头。,上图中A点的测压管水头为:,水力学基本方程式可写成:,可见,在静止液体中,各点的测压管水头不变。,第二章 水静力学,2-5重力和惯性力联合作用下 液体的相对平衡,相对平衡:,液体相对于地球总是运动的,但各质点之间及液体与器皿之间都没有相对运动。,质量力:,重力和惯性力。,惯性力的计算方法:,先求出某质点相对于地球的加速度,将其反号并乘以该质点的质量。(达兰贝尔原理),第二章 水静力学,第一种情况:,流体在以
19、等角速度绕铅直轴旋转,与器皿相对平衡,分析距OZ 轴半径为r处任意质点A所受质量力。,设质点A的质量为M,各坐标轴上的分量:,离心惯性力:,单位质量的离心惯性力:,第二章 水静力学,在各坐标轴的分量:,由叠加原理:,代入欧拉平衡微分方程,第二章 水静力学,代入原式,有:,注意:,在旋转液体中,各点的测压管水头都不是常数。,第二种情况:液体在作直线等加速运动的器皿中的相对平衡。,第二章 水静力学,单位质量力:,重力:,惯性力:,由叠加原理:,代入方程:,代入上式,则,式中:,为所求的那一点在自由液面下的铅直深度h,,则:,第二章 水静力学,第三种情况:,液体作直线等速运动之器皿中的相对平衡。,显
20、然,液体的等压面和自由液面都是水平面,仅有重力而无惯性力。,代入得:,代入上式,则,第二章 水静力学,例1:,有一小车,内盛液体,车内尺寸长L=3.0m,宽b=1.2m,静止时水深h=2.0m,小车作水平等加速运动,ax=4.0m。试计算小车运动时水面倾斜角和底面AB受力大小?,解:,根据平衡微分方程,代入:,第二章 水静力学,所以,计算液体任一点的压强:,按相对压强计算,在自由液面上,点A的坐标,第二章 水静力学,B点坐标,平均压强,作用在AB底面上的力:,简便方法:,直接计算AB板中心点压强,代入,第二章 水静力学,例2:,边长为b的敞口立方水箱中原来装满水,当容器,以匀加速度向右运动时,
21、 试求:, 水溢出1/3时的加速度 ;, 水剩下1/3时的加速度 ;,解:,水溢出1/3时,水剩下1/3时(自算),第二章 水静力学,2-6作用在平面上的静水总压力,概述:,对于一个平面作用面,静水总压力的作用方向必然垂直地压向这个作用面。需要解决的问题是它的大小和作用点。,方法分有解析法和图解法。,一、解析法:是根据力学和数学的分析方法,来求平面上静水总压力的一般计算公式。,1、总压力的大小和方向,第二章 水静力学,dA上的压力为,Pc为受压面形心的相对压强,形心点上的压强亦即是整个平面上的平均压强,静水总压力的方向是沿着受压面的内法线方向,2-6作用在平面上的静水总压力,2、总压力的作用点
22、,静水总压力在平面上的作用点叫做压力中心。,压力中心的位置必然低于形心的位置,只有当平面呈水平时,总压力的作用点才与面积的形心相重合。,设:,压力中心为D,它在水面下的深度为hD,利用力学定理(合力对任一轴的力矩等于各分力对该轴力矩的代数和),得:,对OX轴,即:,2-6作用在平面上的静水总压力,同时,根据惯性矩的平行移轴定理。,有:,于是:,永远大于零,这说明压力中心D总是在平面形心之下,D点与C点在y方向上的距离为:,在实际工程中,受压面多是左右对称的,即总压力的作用点必位于对称轴上,因而,只需求出压力中心在Y方向的位置就可以了。,2-6作用在平面上的静水总压力,几种常见平面的Jc及形心点
23、位置的计算式,(式中 ),2-6作用在平面上的静水总压力,二、图解法,采用图解法时,须先绘出压强分布图,然后根据压强分布图形计算总压力。,a、压强分布图,b、剖面图,总压力为:,所以;平面上静水总压力的大小等于作用在平面上的压强分布图的体积。,=,1、求大小,2-6作用在平面上的静水总压力,2-6作用在平面上的静水总压力,总压力的作用线通过压强分布图形体积的形心,压向被作用平面。,2、求作用点,对于矩形平板,静水总压力的作用点可由三角形压强分布图形面积的形心定出。,已知闸门直径d=0.5m,距离a=1.0m,闸门与自由水面间的倾斜角=600,水为淡水。,解:,、求总压力,2-6作用在平面上的静
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
10000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 水力学 课件 PPT
