2014届山东省淄博市高三3月模拟考试文科数学试卷与答案(带解析).doc
《2014届山东省淄博市高三3月模拟考试文科数学试卷与答案(带解析).doc》由会员分享,可在线阅读,更多相关《2014届山东省淄博市高三3月模拟考试文科数学试卷与答案(带解析).doc(18页珍藏版)》请在麦多课文档分享上搜索。
1、2014届山东省淄博市高三 3月模拟考试文科数学试卷与答案(带解析) 选择题 已知集合 , ,则 ( ) A B C D 答案: B 试题分析:因为 , 所以, .选 B. 考点:集合的运算 ,一元二次不等式的解法 . 若函数 的导函数在区间 上的图像关于直线 对称,则函数在区间 上的图象可能是( ) A B C D 答案: D 试题分析:因为函数 的导函数在区间 上的图象关于直线对称,即导函数要么图象无增减性,要么是在直线 两侧单调性相反; 由图 得,在 处切线斜率最小,在 处切线斜率最大,故导函数图象不关于直线 对称,故 不成立; 由图 得,在 处切线斜率最大,在 处切线斜率最小,故导函数
2、图象不关于直线 对称,故 不成立; 由图 得,原函数为一次函数,其导函数为常数函数,故导函数图象关于直线对称, 成立; 由图 得,原函数有一对称中心,在直线 与原函数图象的交点处,故导函数图象关于直线 对称, 成立; 所以,满足要求的有 故选 D 考点:利用导数研究函数的单调性,函数的图象 . 过抛物线 焦点 的直线交其于 , 两点, 为坐标原点若,则 的面积 为( ) A B C D 2 答案: C 试题分析:设直线 的倾斜角为 及 , , 点 到准线 的距离为 , ,则 的面积为 故选 C. 考点:抛物线的几何性质,直线与抛物线的位置关系 . 下列说法正确的是 A “ 为真 ”是 “ 为真
3、 ”的充分不必要条件; B设有一个回归直线方程为 ,则变量 每增加一个单位, 平均减少 个单位; C若 ,则不等式 成立的概率是 ; D已知空间直线 ,若 , ,则 答案: B 试题分析:由 为真可知, 至少有一个是真命题即可,所以 不一定是真命题;反之, 是真命题, 均为真命题,所以 一定是真命题,A不正确; 由以 代替 中的 ,得 ,即变量 每增加一个单位,平均减少 个单位,所以 B正确; 确定的点 对应正方形面积为 1,满足 的点 对应图形的面积为 ,所以不等式 成立的概率是 , C 不正确; 由于 是空间直线,所以 , 时, 或 为异面直线, D不正确 . 故选 B. 考点:充要条件,
4、简单逻辑联结词,回归分析,几何概型,空间直线的位置关系 . 把边长为 的正方形 沿对角线 折起,形成的三棱锥 的正视图与俯视图如图所示,则其侧视图的面积为( ) A B C D 答案: D 试题分析:由正视图与俯视图可得三棱锥 的一个侧面与底面垂直,其侧视图是直角三角形,且直角边长均为 ,所以侧视图的面积为,选 D. 考点:三视图 设 , ,若 ,则 的最小值为 A B 6 C D 答案: A 试题分析:因为 , , ,所以 , ; 所以, 当且仅当 时, “=”成立,故答案:为 A. 考点:基本不等式 执行如图所示的程序框图,若输入的 的值为 ,则输出的 的值为( ) A 3 B 126 C
5、 127 D 128 答案: C 试题分析:输入的 的值为 ,运行程序, 不满足 ; 运行程序, 不满足 ; 运行程序, 满足 ,输出 . 故选 C. 考点:算法与程序框图 在等差数列 中,已知 ,则 =( ) A 10 B 18 C 20 D 28 答案: C 试题分析:因为 ,所以由等差数列的性质,得 , 所以 = ,选 C. 考点:等差数列的性质 已知 ,那么 的值是( ) A B C D 答案: B 试题分析:因为 ,所以,选 B. 考点:三角函数的同角公式、倍角公式 . 在复平面内,复数 对应的点位于( ) A第一象限 B第二象限 C第三象限 D第四象限 答案: D 试题分析:因为
6、,所以其对应点为 ,位于第四象限 .选 D. 考点:复数的几何意义,复数的四则运算 . 填空题 对于大于 1的自然数 的三次幂可用奇数进行以下方式的 “分裂 ”:仿此,若 的 “分裂数 ”中有一个是 2015,则 答案: 试题分析:由已给定的前边向个自然数的三次幂的分裂中,不难找出规律,即增加 ,累加的奇数个数便多 ,我们不难计算 是第 个奇数,若它是 的分解,则 至 的分解中,累加的奇数一定不能超过 个 . , 即 ,解得 . 考点:新定义问题,归纳推理,等差数列的求和公式,一元二次不等式的解法 . 已知点 ,若点 是圆 上的动点,则面积的最小值为 答案: 试题分析: ,即 圆的圆心 ,半径
7、为 如图,过圆心作 所在直线的垂线,交圆于 ,此时 的面积最小 圆心到直线 : 的距离为 ,所以 , 即 面积的最小值为 . 考点:直线方程,点到直线的距离公式,圆的方程 . 已知向量 、 的夹角为 ,且 , ,则向量 与向量 的夹角等于 答案: (或 ) 试题分析: 设向量 与向量 的夹角为 , 则 , 而 , 所以 , ,即向量 与向量 的夹角等于 (或 ) . 考点:平面向量的数量积、模及夹角 . 已知变量 满足约束条件 ,则 的最大值是 答案: 试题分析:作出可行域如图所示,直线 .平移直线 ,当其经过点时,直线的纵截距最大,即 最大,最大值为 . 考点:简单线性规划 已知函数 为奇函
8、数,当 时, ,则满足不等式的 的取值范围是 答案: 试题分析:当 时, ,由 得 所以 ,同理,当 时, ; 根据奇函数的图象关于原点对称知,当 时, ,故答案:为. 考点:函数的奇偶性,对数函数的性质 . 解答题 已知向量 , ,函数 , 三个内角 的对边分别为 . ( 1)求 的单调递增区间; ( 2)若 ,求 的面积 答案:( 1)函数 的单调增区间为 . ( 2) 的面积 . 试题分析:( 1)根据平面向量的数量积,应用和差倍半的三角函数公式,将化简为 ,讨论函数的单调性; ( 2) 本题解答可有两种思路,在利用 得到 , 求得 后,一是可应用正弦定理 ,得到 , 或者 根据 为钝角
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2014 山东省 淄博市 模拟考试 文科 数学试卷 答案 解析
