2014年普通高等学校招生全国统一考试(北京卷)数学文及答案解析.docx
《2014年普通高等学校招生全国统一考试(北京卷)数学文及答案解析.docx》由会员分享,可在线阅读,更多相关《2014年普通高等学校招生全国统一考试(北京卷)数学文及答案解析.docx(10页珍藏版)》请在麦多课文档分享上搜索。
1、2014年 普 通 高 等 学 校 招 生 全 国 统 一 考 试 ( 北 京 卷 ) 数 学 文一 、 选 择 题 共 8 小 题 , 每 小 题 5 分 , 共 40分 .在 每 小 题 列 出 的 四 个 选 项 中 , 选 出 符 合 题 目要 求 的 一 项1.若 集 合 A=0, 1, 2, 4, B=1, 2, 3, 则 A B=( )A.0, 1, 2, 3, 4B.0, 4C.1, 2D.3解 析 : A=0, 1, 2, 4, B=1, 2, 3, A B=0, 1, 2, 4 1, 2, 3=1, 2.答 案 : C. 2.下 列 函 数 中 , 定 义 域 是 R 且
2、为 增 函 数 的 是 ( )A.y=e-xB.y=xC.y=lnxD.y=|x|解 析 : A.函 数 的 定 义 域 为 R, 但 函 数 为 减 函 数 , 不 满 足 条 件 .B.函 数 的 定 义 域 为 R, 函 数 增 函 数 , 满 足 条 件 .C.函 数 的 定 义 域 为 (0, + ), 函 数 为 增 函 数 , 不 满 足 条 件 .D.函 数 的 定 义 域 为 R, 在 (0, + )上 函 数 是 增 函 数 , 在 (- , 0)上 是 减 函 数 , 不 满 足 条 件 .答 案 : B.3.已 知 向 量 =(2, 4), =(-1, 1), 则 2
3、- =( )A.(5, 7) B.(5, 9)C.(3, 7)D.(3, 9)解 析 : 由 =(2, 4), =(-1, 1), 得 : 2 - =2(2, 4)-(-1, 1)=(4, 8)-(-1, 1)=(5, 7).答 案 : A.4.执 行 如 图 所 示 的 程 序 框 图 , 输 出 的 S值 为 ( ) A.1B.3C.7D.15解 析 : 由 程 序 框 图 知 : 算 法 的 功 能 是 求 S=1+21+22+ +2k的 值 , 跳 出 循 环 的 k值 为 3, 输 出 S=1+2+4=7.答 案 : C.5.设 a, b 是 实 数 , 则 “ a b” 是 “ a
4、 2 b2” 的 ( )A.充 分 而 不 必 要 条 件B.必 要 而 不 充 分 条 件C.充 分 必 要 条 件D.既 不 充 分 也 不 必 要 条 件解 析 : 因 为 a, b都 是 实 数 , 由 a b, 不 一 定 有 a2 b2, 如 -2 -3, 但 (-2)2 (-3)2, 所 以 “ a b” 是 “ a2 b2” 的 不 充 分 条 件 ;反 之 , 由 a 2 b2也 不 一 定 得 a b, 如 (-3)2 (-2)2, 但 -3 -2, 所 以 “ a b” 是 “ a2 b2”的 不 必 要 条 件 .答 案 : D6.已 知 函 数 f(x)= -log2
5、x, 在 下 列 区 间 中 , 包 含 f(x)零 点 的 区 间 是 ( )A.(0, 1)B.(1, 2)C.(2, 4)D.(4, + )解 析 : f(x)= -log 2x, f(2)=2 0, f(4)=- 0,满 足 f(2)f(4) 0, f(x)在 区 间 (2, 4)内 必 有 零 点 ,答 案 : C7.已 知 圆 C: (x-3)2+(y-4)2=1和 两 点 A(-m, 0), B(m, 0)(m 0), 若 圆 C 上 存 在 点 P, 使 得 APB=90 , 则 m 的 最 大 值 为 ( ) A. 7B. 6C. 5D. 4解 析 : 圆 C: (x-3)2
6、+(y-4)2=1的 圆 心 C(3, 4), 半 径 为 1, 圆 心 C 到 O(0, 0)的 距 离 为 5, 圆 C 上 的 点 到 点 O 的 距 离 的 最 大 值 为 6.再 由 APB=90 , 以 A 为 直 径 的 圆 和 圆 C 有 交 点 , 可 得 PO= AB=m, 故 有 m 6,答 案 : B.8.加 工 爆 米 花 时 , 爆 开 且 不 糊 的 粒 数 占 加 工 总 粒 数 的 百 分 比 称 为 “ 可 食 用 率 ” , 在 特 定 条 件下 , 可 食 用 率 p与 加 工 时 间 t(单 位 : 分 钟 )满 足 函 数 关 系 p=at 2+bt
7、+c(a, b, c 是 常 数 ), 如图 记 录 了 三 次 实 验 的 数 据 , 根 据 上 述 函 数 模 型 和 实 验 数 据 , 可 以 得 到 最 佳 加 工 时 间 为 ( )A.3.50分 钟B.3.75分 钟 C.4.00分 钟D.4.25分 钟解 析 : 将 (3, 0.7), (4, 0.8), (5, 0.5)分 别 代 入 p=at2+bt+c, 可 得 ,解 得 a=-0.2, b=1.5, c=-2, p=-0.2t2+1.5t-2, 对 称 轴 为 t=- =3.75.答 案 : B.二 、 填 空 题 共 6 小 题 , 每 小 题 5 分 , 共 30
8、分 .9.若 (x+i)i=-1+2i(x R), 则 x= .解 析 : (x+i)i=-1+2i, -1+xi=-1+2i, 由 复 数 相 等 可 得 x=2 答 案 : 210.设 双 曲 线 C 的 两 个 焦 点 为 (- , 0), ( , 0), 一 个 顶 点 是 (1, 0), 则 C 的 方 程 为 .解 析 : 双 曲 线 C 的 两 个 焦 点 为 (- , 0), ( , 0), 一 个 顶 点 是 (1, 0), c= , a=1, b=1, C 的 方 程 为 x2-y2=1.答 案 : x2-y2=1.11.某 三 棱 锥 的 三 视 图 如 图 所 示 ,
9、则 该 三 棱 锥 最 长 棱 的 棱 长 为 . 解 析 : 由 主 视 图 知 CD 平 面 ABC, 设 AC中 点 为 E, 则 BE AC, 且 AE=CE=1;由 左 视 图 知 CD=2, BE=1,在 Rt BCE中 , BC= ,在 Rt BCD中 , BD=2 ,在 Rt ACD中 , AD=2 .则 三 棱 锥 中 最 长 棱 的 长 为 2 . 答 案 : 2 .12.在 ABC中 , a=1, b=2, cosC= , 则 c= ; sinA= .解 析 : 在 ABC中 , a=1, b=2, cosC= , 由 余 弦 定 理 得 : c2=a2+b2-2abco
10、sC=1+4-1=4, 即 c=2; cosC= , C为 三 角 形 内 角 , sinC= = , 由 正 弦 定 理 = 得 : sinA= = = . 答 案 : 2;13.若 x, y满 足 , 则 z= x+y的 最 小 值 为 . 解 析 : 由 约 束 条 件 作 出 可 行 域 如 图 ,化 目 标 函 数 z= x+y为 , 由 图 可 知 , 当 直 线 过 C(0, 1)时 直 线 在 y轴 上 的 截 距 最 小 .此 时 .答 案 : 1.14.顾 客 请 一 位 工 艺 师 把 A, B 两 件 玉 石 原 料 各 制 成 一 件 工 艺 品 , 工 艺 师 带
11、一 位 徒 弟 完 成 这 项任 务 , 每 件 原 料 先 由 徒 弟 完 成 粗 加 工 , 再 由 师 傅 进 行 精 加 工 完 成 制 作 , 两 件 工 艺 品 都 完 成 后交 付 顾 客 , 两 件 原 料 每 道 工 序 所 需 时 间 ( 单 位 : 工 作 日 ) 如 下 : 则 最 短 交 货 期 为 个 工 作 日 .解 析 : 由 题 意 , 徒 弟 利 用 6天 完 成 原 料 B的 加 工 , 由 师 傅 利 用 21天 完 成 精 加 工 , 与 此 同 时 ,徒 弟 利 用 9天 完 成 原 料 A的 加 工 , 最 后 由 师 傅 利 用 15天 完 成
12、精 加 工 , 故 最 短 交 货 期 为6+21+15=42 个 工 作 日 .答 案 : 42.三 、 解 答 题 , 共 6小 题 , 满 分 80 分 , 解 答 应 写 出 文 字 说 明 , 演 算 步 骤 或 证 明 过 程 .15.(13分 )已 知 a n是 等 差 数 列 , 满 足 a1=3, a4=12, 数 列 bn满 足 b1=4, b4=20, 且 bn-an为等 比 数 列 .( )求 数 列 an和 bn的 通 项 公 式 ;( )求 数 列 bn的 前 n 项 和 .解 析 : ( )利 用 等 差 数 列 、 等 比 数 列 的 通 项 公 式 先 求 得
13、 公 差 和 公 比 , 即 得 结 论 ;( )利 用 分 组 求 和 法 , 有 等 差 数 列 及 等 比 数 列 的 前 n 项 和 公 式 即 可 求 得 数 列 的 和 .答 案 : ( )设 等 差 数 列 a n的 公 差 为 d, 由 题 意 得 d= = =3. an=a1+(n-1)d=3n(n=1, 2, ),设 等 比 数 列 bn-an的 公 比 为 q, 则 q3= = =8, q=2, bn-an=(b1-a1)qn-1=2n-1, bn=3n+2n-1(n=1, 2, ).( )由 ( )知 bn=3n+2n-1(n=1, 2, ). 数 列 3n的 前 n
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2014 普通高等学校 招生 全国 统一 考试 北京 数学 答案 解析
