【考研类试卷】考研数学三(一元函数微分学)-试卷18及答案解析.doc
《【考研类试卷】考研数学三(一元函数微分学)-试卷18及答案解析.doc》由会员分享,可在线阅读,更多相关《【考研类试卷】考研数学三(一元函数微分学)-试卷18及答案解析.doc(8页珍藏版)》请在麦多课文档分享上搜索。
1、考研数学三(一元函数微分学)-试卷 18 及答案解析(总分:60.00,做题时间:90 分钟)一、选择题(总题数:9,分数:18.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_2.设函数 f(x)是定义在(1,1)内的奇函数,且 (分数:2.00)A.aB.aC.0D.不存在3.设 f(x)= (分数:2.00)A.极限不存在B.极限存在,但不连续C.连续,但不可导D.可导4.设函数 f(x)可导,且曲线 y=f(x)在点(x 0 ,f(x 0 )处的切线与直线 y=2x 垂直,则当x0 时,该函数在 x=x 0 处的微分 dy 是 ( )(分数:2.
2、00)A.与x 同阶但非等价的无穷小B.与x 等价的无穷小C.比x 高阶的无穷小D.比x 低阶的无穷小5.已知函数 f(x)=lnx1,则 ( ) (分数:2.00)A.B.C.D.6.函数 y= (分数:2.00)A.(1,0)B.(C.(1,0)D.(7.函数 f(x)= 在 x= 处的 ( ) (分数:2.00)A.B.C.D.8.设函数 f(x)具有任意阶导数,且 f(x)=f(x) 2 ,则 f (n) (x)= ( )(分数:2.00)A.nf(x) n+1B.n!f(x) n+1C.(n+1)f(x) n+1D.(n+1)!f(x) n+19.函数 y=f(x)满足条件 f(0)
3、=1,f(0)=0,当 x0 时,f(x)0,f(x) 则它的图形是 ( )(分数:2.00)A.B.C.D.二、填空题(总题数:4,分数:8.00)10.如果 f(x)在a,b上连续,无零点,但有使 f(x)取正值的点,则 f(x)在a,b上的符号为 1(分数:2.00)填空项 1:_11.设函数 f(x)= (分数:2.00)填空项 1:_12.曲线 y=x+ (分数:2.00)填空项 1:_13.设曲线 y=ax 3 +bx 2 +cx+d 经过(2,44),x=2 为驻点,(1,10)为拐点,则 a,b,c,d 的值分别为 1(分数:2.00)填空项 1:_三、解答题(总题数:17,分
4、数:34.00)14.解答题解答应写出文字说明、证明过程或演算步骤。(分数:2.00)_15.设 f(x)=x 3 +4x 2 3x1,试讨论方程 f(x)=0 在(,0)内的实根情况(分数:2.00)_16.求 (分数:2.00)_17.设 (分数:2.00)_18.设函数 f(y)的反函数 f 1 (x)及 ff 1 (x)与 ff 1 (x)都存在,且 f 1 f 1 (x)0证明: (分数:2.00)_19.求函数 y= (分数:2.00)_20.设 y= (分数:2.00)_21.设 y=y(x)是由 siny= (分数:2.00)_22.设 y=f(1nx)e f(x) ,其中 f
5、 可微,计算 (分数:2.00)_23.设函数 f(x)在 x=2 的某邻域内可导,且 f(x)=e f(x) ,f(2)=1,计算 f (n) (2)(分数:2.00)_24.设曲线 f(x)=x n 在点(1,1)处的切线与 x 轴的交点为(x n ,0),计算 (分数:2.00)_25.曲线 y= (分数:2.00)_26.设 (x)= (分数:2.00)_27.证明:不等式 1+xln(x+ (分数:2.00)_28.讨论方程 2x 3 9x 2 +12xa=0 实根的情况(分数:2.00)_29.讨论方程 axe x +b=0(a0)实根的情况(分数:2.00)_30.设 f n (
6、x)=x+x 2 +x n ,n=2,3, (1)证明:方程 f n (x)=1 在0,+)有唯一实根 x n ; (2)求 (分数:2.00)_考研数学三(一元函数微分学)-试卷 18 答案解析(总分:60.00,做题时间:90 分钟)一、选择题(总题数:9,分数:18.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数:2.00)_解析:2.设函数 f(x)是定义在(1,1)内的奇函数,且 (分数:2.00)A.a B.aC.0D.不存在解析:解析:由于 f(x)为(1,1)内的奇函数,则 f(0)=0于是 3.设 f(x)= (分数:2.00)A.极限不存在B.极
7、限存在,但不连续C.连续,但不可导D.可导 解析:解析:显然 =f(0)=0,f(x)在 x=0 点连续 由于 所以 f (0)=0 又 4.设函数 f(x)可导,且曲线 y=f(x)在点(x 0 ,f(x 0 )处的切线与直线 y=2x 垂直,则当x0 时,该函数在 x=x 0 处的微分 dy 是 ( )(分数:2.00)A.与x 同阶但非等价的无穷小B.与x 等价的无穷小 C.比x 高阶的无穷小D.比x 低阶的无穷小解析:解析:由题设可知 f(x 0 )=1,而 dy x=x0 =f(x 0 )x=x,因而 5.已知函数 f(x)=lnx1,则 ( ) (分数:2.00)A.B. C.D.
8、解析:解析:应当把绝对值函数写成分段函数, 当 x1 时,f(x)= ;当 x1 时,f(x)=6.函数 y= (分数:2.00)A.(1,0)B.( C.(1,0)D.(解析:解析:因为 f(x)=x 2 +x+6,所以 f(0)=6故过(0,1)的切线方程为 y1=6x,因此与 x 轴的交点为( 7.函数 f(x)= 在 x= 处的 ( ) (分数:2.00)A.B.C.D. 解析:解析:f(x)在 x= 处的左、右导数为: 因此 f(x)在 x= 处不可导,但有 f + ()= 8.设函数 f(x)具有任意阶导数,且 f(x)=f(x) 2 ,则 f (n) (x)= ( )(分数:2.
9、00)A.nf(x) n+1B.n!f(x) n+1 C.(n+1)f(x) n+1D.(n+1)!f(x) n+1解析:解析:由 f(x)=f(x) 2 得 f(x)=f(x)=(f(x) 2 =2f(x)f(x)=2f(x) 3 , 这样 n=1,2 时f (n) (x)=n!f(x) n+1 成立假设 n=k 时,f (k) (x)=k!f(x) k+1 则当 n=k+1 时,有 f (k+1) (x)=k!(f(x) k+1 =(k+1)!f(x) k f(x)=(k+1)!f(x) k+2 , 由数学归纳法可知,结论成立,故选(B)9.函数 y=f(x)满足条件 f(0)=1,f(0
10、)=0,当 x0 时,f(x)0,f(x) 则它的图形是 ( )(分数:2.00)A.B. C.D.解析:解析:因函数单调增加,且在 x=0 处有水平切线,选(B)二、填空题(总题数:4,分数:8.00)10.如果 f(x)在a,b上连续,无零点,但有使 f(x)取正值的点,则 f(x)在a,b上的符号为 1(分数:2.00)填空项 1:_ (正确答案:正确答案:正)解析:解析:利用反证法,假设存在点 x 1 a,b,使得 f(x 1 )0又由题意知存在点 x 2 a,b,x 2 x 1 ,使得 f(x 2 )0由闭区间连续函数介值定理可知,至少存在一点 介于 x 1 和 x 2 之间,使得
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考研 试卷 数学 一元函数 微分学 18 答案 解析 DOC
