2019高考数学一轮复习第二章函数2.3二次函数与幂函数课件理.ppt
《2019高考数学一轮复习第二章函数2.3二次函数与幂函数课件理.ppt》由会员分享,可在线阅读,更多相关《2019高考数学一轮复习第二章函数2.3二次函数与幂函数课件理.ppt(18页珍藏版)》请在麦多课文档分享上搜索。
1、第二章 函数,高考理数,2.3二次函数与幂函数,2.3 二次函数与幂函数,知识清单,考点一 二次函数1.图象及性质,2.二次函数的三种形式 (1)一般式:y=ax2+bx+c(a0); (2)顶点式:若二次函数图象的顶点为(h,k),则二次函数为y=a(x-h)2+k(a0); (3)两根式:若二次函数的图象与x轴的两个交点为(x1,0),(x2,0),则二次函 数为y=a(x-x1)(x-x2)(a0). 3.二次函数在闭区间上的最值问题 y=f(x)=a(x-h)2+k(a0)在m,n上的最值问题: (1)hm,n时,ymin=f(h),ymax=maxf(m), f(n). (2)hm,
2、n时, 当hn时, f(x)在m,n上单调递减,ymin=f(n),ymax=f(m).,4.三个“二次”的关系,考点二 幂函数 1.幂函数的定义 一般地,形如y=x的函数叫做幂函数,其中x是自变量,是常数. 2.幂函数的图象 如图(五种幂函数的图象):,3.幂函数y=x,y=x2,y=x3,y= ,y=x-1的性质,ax2+bx+c0)在xm,n上恒成立,需满足 ax2+bx+c0(a0)在xm,n上恒成立,需满足,知识拓展有关不等式的恒成立问题的处理方法: ax2+bx+c0,xR恒成立,需满足 或a=0,b=0,c0.,二次函数的区间最值问题的解法 二次函数的区间最值问题一般有三种情况:
3、 (1)对称轴、区间都是给定的; (2)对称轴动,区间固定; (3)对称轴定,区间变动. 解决这类问题的思路是抓住“三点一轴”数形结合,三点是指区间的两 个端点和中点,一轴是指对称轴,结合配方法,根据函数的单调性及分类 讨论的思想即可完成. 对于(2)、(3)两种情况,通常要分对称轴与x轴交点的横坐标在区间内与 在区间外进行讨论.,方法技巧,例1 (2016皖北第一次联考,8)已知函数f(x)=-x2+2ax+1-a在区间0,1上 的最大值为2,则a的值为 ( D ) A.2 B.-1或-3 C.2或-3 D.-1或2,解题导引 对函数图象的对 称轴进行讨论 确定函数在0,1 上的单调性 结合
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 高考 数学 一轮 复习 第二 函数 23 二次 课件 PPT
