2018高中数学第2章推理与证明章末复习提升课件苏教版选修1_2.ppt
《2018高中数学第2章推理与证明章末复习提升课件苏教版选修1_2.ppt》由会员分享,可在线阅读,更多相关《2018高中数学第2章推理与证明章末复习提升课件苏教版选修1_2.ppt(32页珍藏版)》请在麦多课文档分享上搜索。
1、第2章,推理与证明,1,知识网络 系统盘点,提炼主干,2,要点归纳 整合要点,诠释疑点,3,题型研修 突破重点,提升能力,章末复习提升,1.归纳和类比都是合情推理,前者是由特殊到一般,部分到整体的推理,后者是由特殊到特殊的推理,但二者都能由已知推测未知,都能用于猜想,推理的结论不一定为真,有待进一步证明.,2.演绎推理与合情推理不同,是由一般到特殊的推理,是数学中证明的基本推理形式.也是公理化体系所采用的推理形式,另一方面,合情推理与演绎推理又是相辅相成的,前者是后者的前提,后者论证前者的可靠性.,3.直接证明和间接证明是数学证明的两类基本证明方法.直接证明的两类基本方法是综合法和分析法:综合
2、法是从已知条件推导出结论的证明方法;分析法是由结论追溯到条件的证明方法,在解决数学问题时,常把它们结合起来使用,间接证法的一种方法是反证法,反证法是从结论反面成立出发,推出矛盾的证明方法.,题型一 归纳推理和类比推理 归纳推理和类比推理是常用的合情推理,两种推理的结论“合情”但不一定“合理”,其正确性都有待严格证明.尽管如此,合情推理在探索新知识方面有着极其重要的作用. 运用合情推理时,要认识到观察、归纳、类比、猜想、证明,是相互联系的.在解决问题时,可以先从观察入手,发现问题的特点,形成解决问题的初步思路,然后用归纳、类比的方法进行探索、猜想,最后用逻辑推理方法进行验证.,例1 观察下列各式
3、:ab1,a2b23,a3b34,a4b47,a5b511,则a10b10_.,解析 记anbnf(n), 则f(3)f(1)f(2)134; f(4)f(2)f(3)347; f(5)f(3)f(4)11. 通过观察不难发现f(n)f(n1)f(n2)(nN*,n3), 则f(6)f(4)f(5)18;,f(7)f(5)f(6)29; f(8)f(6)f(7)47; f(9)f(7)f(8)76; f(10)f(8)f(9)123. 所以a10b10123. 答案 123,跟踪演练1 给出下列三个类比结论: (ab)nanbn与(ab)n类比,则有(ab)nanbn; loga(xy)log
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 高中数学 推理 证明 复习 提升 课件 苏教版 选修 _2PPT
