2018年高中数学第二章推理与证明2.3.1数学归纳法课件4新人教B版选修2_2.ppt
《2018年高中数学第二章推理与证明2.3.1数学归纳法课件4新人教B版选修2_2.ppt》由会员分享,可在线阅读,更多相关《2018年高中数学第二章推理与证明2.3.1数学归纳法课件4新人教B版选修2_2.ppt(15页珍藏版)》请在麦多课文档分享上搜索。
1、数学归纳法,请问:以上三个结论正确吗?为什么?得出以上结论所用的方法有什么共同点和什么不同点, 共同点:均用了归纳法得出结论;不同点:问题1、2是用的不完全 归纳法,问题3是用的完全归纳法。,一、提出问题, 1、错,2、对,3、对,问题情境二:数学家费马运用不完全归纳法得出费马猜想的事例,猜想:都是质数,法国的数学家费马(Pierre de Fermat)(1601年1665年) 。 十七世纪最卓越的数学家之一, 他在数学许多领域中都有极大的贡献, 因为他的本行是专业的律师, 为了表彰他的数学造诣, 世人冠以“业余王子”之美称,,学习目标,1、理解数学归纳法的原理,并掌 握它的基本步骤与方法;
2、2、能用数学归纳证明一些简单的与正整数n有关的数学命题。,问题情境,多 米 诺 骨 牌 课 件 演 示,二、挖掘内涵、形成概念:,证明某些与自然数有关的数学题,可用下列方法来证明它们的正确性: (1)验证当n取第一个值n0(例如n0=1)时命题成立,(2)假设当n=k(kN* ,kn0 )时命题成立,证明当n=k+1时命题也成立,完成这两步,就可以断定这个命题对从n0开始的所有正整数n都成立。这种证明方法叫做数学归纳法。,【归纳奠基】,【归纳递推】,3、数学归纳法,思考题: (1)数学归纳法能证明什么样类型的命题? (2)数学归纳法有几个步骤?每个步骤说明什么问题?(3)为什么这些步骤缺一不可
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 年高 数学 第二 推理 证明 231 归纳法 课件 新人 选修 _2PPT
