版选修4_5.ppt
《版选修4_5.ppt》由会员分享,可在线阅读,更多相关《版选修4_5.ppt(26页珍藏版)》请在麦多课文档分享上搜索。
1、2.绝对值不等式的解法,1.绝对值不等式|x|a和|x|a的解法,做一做1 若不等式|x|2a-1的解集为R,则实数a的取值范围是 .,2.|ax+b|c和|ax+b|c型不等式的解法 (1)不等式|ax+b|c(c0)的求解:先化为不等式组-cax+bc,再利用不等式的性质求出原不等式的解集. (2)不等式|ax+b|c(c0)的求解:先化为不等式组ax+b-c或ax+bc,再利用不等式的性质求出原不等式的解集.,名师点拨解含绝对值不等式的核心任务是:先去绝对值,将不等式恒等变形为不含绝对值的常规不等式,再利用已经掌握的解题方法求解,注意不可盲目平方去绝对值符号.,做一做2 (1)不等式|2
2、x-1|2的解集为 . 解析:(1)由|2x-1|2可得x-42,或x-46,或x6或x6或x2,3.|x-a|+|x-b|c和|x-a|+|x-b|c型不等式的解法 有三种不同的解法: (1)利用绝对值不等式的几何意义求解,体现数形结合思想.理解绝对值的几何意义,给绝对值不等式以准确的几何解释是解题关键. (2)以绝对值的零点为分界点,将数轴分为几个区间,利用“零点分段法”求解,体现分类讨论的思想.确定各个绝对值符号内多项式的正、负性,进而去掉绝对值符号. (3)通过构造函数,利用函数的图象求解,体现函数与方程的思想.正确求出函数的零点并画出函数图象(有时需要考虑函数的增减性)是关键.,特别
3、提醒对于|x-a|-|x-b|c和|x-a|-|x-b|c型的不等式,也可采用上述三种方法进行求解,即(1)几何意义法;(2)零点分段法;(3)构造函数法.,做一做3 不等式|x+2|+|x-3|4的解集为 . 解析:因为|x+2|+|x-3|(x+2)-(x-3)|=5,即|x+2|+|x-3|的最小值为5,所以不等式|x+2|+|x-3|4恒成立,即解集为R. 答案:R,思考辨析 判断下列说法是否正确,正确的在后面的括号内画“”,错误的画“”. (1)关于x的不等式|2x-3|m的解集不可能为空集. ( ) (3)关于x的不等式|x-a|-|x-b|m的解集不可能是全体实数集R. ( )
4、(4)不等式|x2-2x-3|0的解集为全体实数集R. ( ),探究一,探究二,思维辨析,形如|ax+b|c和|ax+b|c型不等式的解法 【例1】 解不等式: (1)|5x-2|8;(2)2|x-2|4. 分析:(1)直接利用|ax+b|c型不等式的解法求解;(2)转化为不等式组求解.,由|x-2|2得x-2-2,或x-22,所以x0,或x4. 由|x-2|4得-4x-24, 所以-2x6. 故原不等式的解集为x|-2x0或4x6.,探究一,探究二,思维辨析,反思感悟形如|f(x)|a和|f(x)|a(a0)型的不等式,均可采用等价转化法进行求解,即|f(x)|a-af(x)a,|f(x)|
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 选修 _5PPT
