2019高考数学专题三含导函数的抽象函数的构造精准培优专练文.doc
《2019高考数学专题三含导函数的抽象函数的构造精准培优专练文.doc》由会员分享,可在线阅读,更多相关《2019高考数学专题三含导函数的抽象函数的构造精准培优专练文.doc(11页珍藏版)》请在麦多课文档分享上搜索。
1、1培优点三 含导函数的抽象函数的构造1对于 0fxa,可构造 hxfax例 1:函数 f的定义域为 R, ()12f,对任意 R, ()2fx,则 24fx的解集为( )A (),B (), C ()1, D (),【答案】B【解析】构造函数 24Gxfx,所以 ()2Gxf,由于对任意 Rx,()2fx,所以 ()0fx恒成立,所以 4xfx是 R上的增函数,又由于 ()12140Gf,所以 20Gf,即 24fx的解集为 , 2对于 0xffx,构造 hxf;对于 0xffx,构造 fxh例 2:已知函数 y的图象关于 y轴对称,且当 ,, 0f成立,02af, log3lbf, 33lo
2、g9lcf,则 a, b, c的大小关系是( )A cB acbC cD ac【答案】D【解析】因为函数 yfx关于 y轴对称,所以函数 yxf为奇函数因为 xfff,所以当 ,0x时, 0ffxf,函数y单调递减,当 0,x时,函数 yfx单调递减因为 0.21, log31, 3l92,所以 0.23loglog9,所以 bac3对于 ()0fxf,构造 exhf;对于 ()fxf或 ()0fxf,构造2()exfh例 3:已知 f为 R上的可导函数,且 Rx,均有 fxf,则有( )A 2016e()(0ff, 2016)e()ffB 2016e()(ff, 2016)e()ffC 0f
3、f, ffD 2016e()(ff, 2016)e()ff【答案】D【解析】构造函数 exfg,则 2eex xffffgx,因为 Rx均有 ff并且 0x,所以 0x,故函数 xfg在 R上单调递减,所以 (2016)(g, 216)(g,即 2016()(eff, 2016)(eff,也就是 e0ff, ()ff4 ()fx与 sin, cox构造例 4:已知函数 yf对任意的 ,2x满足 cosin0fxfx,则( )A 024ffB 03ffC 3ff D 24ff【答案】D【解析】提示:构造函数 ()cosfxg3对点增分集训一、选择题1若函数 yfx在 R上可导且满足不等式 ()0
4、xff恒成立,对任意正数 a、b,若 a,则必有( )A ()afbfB ()bfafC ()afbfD ()bfaf【答案】C【解析】由已知 ()0xff构造函数 Fxf,则 ()Fff,从而 x在 R上为增函数。 ab, ()aFb,即 ()afbf,故选 C2已知函数 Rfx满足 1f,且 12fx,则 12xf的解集为( )A 1xB xC 或 D 【答案】D【解析】构造新函数 1()2Fxf,则 1()02Ff,1()2Fxf,对任意 R,有 ()0xf,即函数 Fx在 R上单调递减,所以 0的解集为 (,),即 12f的解集为 (,),故选 D3已知函数 fx的定义域为 , fx为
5、 f的导函数,且 10fxfx,则( )A 10fB 0fxC 0fxD xf【答案】C【解析】由题得 1xf,设 1gxfx,所以函数 gx在 R上单调递增,因为 10g,所以当 x时, 0x;当 时, 0gx4当 1x时, 0gx, 10fx,所以 0fx当 时, , f,所以 f当 1x时, 10ff,所以 10f综上所述,故答案为 C4设函数 fx是函数 Rfx的导函数,已知 fxf,且 4fxfx,0f, 21f则使得 2e0xf成立的 的取值范围是( )A 2, B 0, C 1, D 4,【答案】B【解析】设 exfF,则 e0xffF,即函数 Fx在 R上单调递减,因为 4fx
6、f,即导函数 yf关于直线 2对称,所以函数 yf是中心对称图形,且对称中心 ,1( ) ,由于 40f,即函数 yfx过点 4,0( ) ,其关于点 2,1( ) 的对称点 0,2( ) 也在函数 yfx上,所以有 0f( ) ,所以 0efF,而不等式 2efx,即 2xf ,即 0Fx,所以 0x,故使得不等式 0成立的 的取值范围是 ( , ) 故选 B5已知函数 1yfx的图象关于点 1,0对称,函数 yfx对于任意的 0,x满足sincosfx(其中 fx是函数 fx的导函数) ,则下列不等式成立的是( )A 36ffB 3242ff5C 323ff D 53264ff【答案】C【
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 高考 数学 专题 三含导 函数 抽象 构造 精准 培优专练文 DOC
