2019春九年级数学下册第二章二次函数2.4二次函数的应用第2课时商品利润最大问题教学课件(新版)北师大版.ppt
《2019春九年级数学下册第二章二次函数2.4二次函数的应用第2课时商品利润最大问题教学课件(新版)北师大版.ppt》由会员分享,可在线阅读,更多相关《2019春九年级数学下册第二章二次函数2.4二次函数的应用第2课时商品利润最大问题教学课件(新版)北师大版.ppt(17页珍藏版)》请在麦多课文档分享上搜索。
1、第二章 二次函数,导入新课,讲授新课,当堂练习,课堂小结,第2课时 商品利润最大问题,2.4 二次函数的应用,学习目标,1.能应用二次函数的性质解决商品销售过程中的最大利润问题.(重点) 2.弄清商品销售问题中的数量关系及确定自变量的取值范围. (难点),导入新课,情境引入,短片中,卖家使出浑身解数来赚钱. 商品买卖过程中,作为商家利润最大化是永恒的追求.如果你是商家,如何定价才能获得最大利润呢?,讲授新课,某商品现在的售价为每件60元,每星期可卖出300件,已知商品的进价为每件40元,则每星期销售额是 元,销售利润 元.,探究交流,18000,6000,数量关系,(1)销售额= 售价销售量;
2、,(2)利润= 销售额-总成本=单件利润销售量;,(3)单件利润=售价-进价.,例1 某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?,涨价销售 每件涨价x元,则每星期售出商品的利润y元,填空:,20,300,20+x,300-10x,y=(20+x)(300-10x),建立函数关系式:y=(20+x)(300-10x),即:y=-10x2+100x+6000.,6000,自变量x的取值范围如何确定?,营销规律是价格上涨,销量下降,因此只要考虑销售量就可以,故
3、300-10x 0,且x 0,因此自变量的取值范围是0 x 30.,涨价多少元时,利润最大,最大利润是多少?,y=-10x2+100x+6000,,当 时,y=-1052+1005+6000=6250.,即涨价5元时,最大利润是6250元.,降价销售 每件降价x元,则每星期售出商品的利润y元,填空:,20,300,20-x,300+18x,y=(20-x)(300+18x),建立函数关系式:y=(20-x)(300+18x),,即:y=-18x2+60x+6000.,例1 某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖
4、出18件,已知商品的进价为每件40元,如何定价才能使利润最大?,6000,综合可知,应定价58元时,才能使利润最大。,自变量x的取值范围如何确定?,营销规律是价格下降,销量上升,因此只要考虑单件利润就可以,故20-x 0,且x 0,因此自变量的取值范围是0 x 20.,降价多少元时,利润最大,是多少?,当 时,即降价 元时,最大利润是6050元.,即:y=-18x2+60x+6000,,由(1)(2)的讨论及现在的销售情况,你知道应该如何定价能使利润最大了吗?,知识要点,求解最大利润问题的一般步骤,(1)建立利润与价格之间的函数关系式: 运用“总利润=总售价-总成本”或“总利润=单件利润 销售
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5000 积分 0人已下载
下载 | 加入VIP,交流精品资源 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 九年级 数学 下册 第二 二次 函数 24 应用 课时 商品 利润 最大 问题 教学 课件 新版 北师大 PPT

链接地址:http://www.mydoc123.com/p-1100692.html